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Summary

Automatic Feature Recognition (AFR) techniques are an important tool for achieving
a true integration of design and manufacturing stages during the product development.
In particular, AFR systems offer capabilities for recognising high-level geometrical
entities in Computer-Aided Design (CAD) models. These entities represent the
features that are semantically significant for downstream applications of engineering
databases, for instance manufacturing. For the past twenty years, numerous AFR
techniques have been proposed. However, most of them are domain specific. The
research reported in this thesis presents a new AFR method that could be applied

easily in different domains.

First, a method for automatic formation of feature recognition rules is developed. The
method utilises inductive learning techniques to generate rules from a set of examples

representing features in CAD models.

Next, a hybrid AFR method is proposed that employs the rule bases. In particular, this
method combines the ‘learning from examples’ concept with the rule-based and hint-
based approaches in order to benefit from their respective strengths. Also, a new
technique is presented for automatic definition of feature hints that overcomes a major

limitation of the hint-based AFR approach.

To extend the capabilities of the AFR method, a geometric reasoning algorithm is
developed to tackle the problems associated with the recognition of interacting

features.



The solutions suggested in this research are implemented in a prototype AFR system
and its performance verified on commonly used benchmarking parts that are

composed of machining features.
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Chapter 1 - Introduction

1.1 Motivation

Market pressures force companies to reduce the lead time from the conceptual design
of products to their serial production. In order to stay competitive, the companies also
have to manufacture the products up to their technical specification at a minimum
cost. Such market pressures have led to the development of concurrent engineering
practices that require the design of products and processes to be integrated and carried
out simultaneously. To achieve this, complete and accurate information about
products, production processes and manufacturing operations is essential. The
introduction of formal techniques into the different product development phases
contributes to such integration. In particular, these techniques allow data-rich
engineering models to be created and thus, used as a communication medium between

different design and manufacturing teams.

The realisation of a true integration between the product and process design stages is a
challenging goal and it requires a consistent utilisation of product information at
different levels of abstraction. One of the data representation schemes that is widely
used to interface Computer-Aided Design (CAD) and Computer-Aided
Manufacturing (CAM) processes is the Boundary Representation (B-Rep) scheme.
However, in spite of its popularity, this scheme has some drawbacks (Dimov et al.,
2004). In particular, the geometrical data stored using the B-Rep scheme cannot be
utilised directly for process design because it lacks high-level geometrical entities that

are meaningful from a manufacturing point of view.
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To bridge this information gap between CAD and CAM systems, several approaches
have been developed based on the concept of features. Features can be considered in a
broad sense as “generic shapes useful in some computer-aided applications” (Shah et
al, 2001). In the context of a specific engineering application, features represent
particular shapes or characteristics of a product or a part that are significant for that

application.

A feature-based model of a part can be created either by applying the design by
feature approach or by conducting Automatic Feature Recognition (AFR) techniques.
In the design by feature approach, designers conceive a product model by selecting
features from a set of pre-defined geometrical entities that are stored in the CAD
system database. These geometrical entities have a functional meaning and may also
have some manufacturing information associated with them. This approach not only
assumes that designers are aware of the manufacturing constraints of a particular
production environment but it also tends to limit their creativity. On the contrary, if
AFR techniques are applied, semantically significant geometrical entities, that are
features in a CAD model, are identified automatically in the context of specific

downstream manufacturing activities.

1.2 Objectives

This thesis concentrates on the problem of automatic feature recognition from CAD
models. In particular, its main objective is to develop a new AFR method that could
be applied easily in different domains. The development of such a domain-

independent solution is very important because the recognition capabilities of most of
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the existing AFR systems are limited to the requirements of specific applications (Ji

and Marefat, 1997).

To achieve this overall objective, it will be required:

1. To develop a method for creating automatically rule sets that form the knowledge

base of AFR systems.

2. To define an AFR method that employs such rule bases. This method should also
be able to perform an efficient search for features and, at the same time, it should

not be constrained to any specific application domain.

3. To build, in the proposed AFR method, capabilities for recognising interacting

features that are common in engineering models.

4. To verify the recognition capabilities of the proposed AFR method by applying it

on benchmarking models from a particular application domain.

1.3 Outline of the thesis

Chapter 2 starts by introducing geometric modelling techniques and the main ideas
associated with the feature concept. Then, existing approaches for AFR are reviewed
and those utilising rule-based, hint-based and neural network-based techniques are

critically analysed.
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Chapter 3 discusses the application of inductive learning techniques for creation of
rule sets that could be employed for AFR utilising data stored in CAD models. In
particular, a method is proposed to meet the specific requirements imposed by the
utilisation of these techniques for acquisition of feature recognition rules. Then, the

method is illustrated by applying it in a particular application domain.

Chapter 4 presents an AFR method that combines the ‘learning from examples’
concept with the rule-based and hint-based feature recognition approaches. This
method also utilises a novel technique for automatic definition of feature hints. Then,

the method is implemented in an AFR system to verify its capabilities.

Chapter 5 discusses open issues associated with the recognition of interacting features
with the proposed AFR method. Solutions are suggested to improve the recognition
capabilities of the method when applied on such features. Then, these solutions are

implemented in the developed AFR system to verify their performance.

Chapter 6 summarises the main contributions of this research, presents the most

important conclusions, and also suggests directions for further work.

Appendix A describes the architecture of the STandard for the Exchange of Product

model data (STEP), which is used in this research to store CAD models.

Appendix B shows an example of a STEP file used in this research.
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Appendix C gives an example of a grammar file developed in this study, which is

used for generating a Java™ program that can parse STEP files.

Appendix D and E show the results of the recognition process carried out on two parts

studied in Chapter 5.



Chapter 2 - Literature review

2.1 Overview

This chapter reviews the background literature relevant to the research presented in
this thesis. It starts by introducing geometric modelling since a link generally exists
between features and the geometry of parts. Then, definitions for the concept of a
feature are discussed together with some important aspects related to the application
of this concept. Finally, the research in the field of Automatic Feature Recognition
(AFR) is reviewed and a particular attention is paid to the rule-based, hint-based and

neural network-based approaches.

2.2 Geometric modelling

Efforts towards the development of part modelling systems for computer-aided design
date from the early sixties. These efforts were driven by the need to establish a
computer representation of product data following the introduction of computer
controlled machine tools (Shah and Mantyla, 1995). The early CAD systems provided
only 2D functions to support the engineering drawing activity. Then, it was required
in the early seventies to extend these 2D systems to the third dimension to represent

3D models. Such models fall in one of the following three categories:

Q Graphical models. These models are also called wireframe models. They are made
of graphical primitives such as points, lines and arcs that are defined in the 3D

space. However, for representing 3D solids, graphical models are deficient. For
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example, they are ambiguous because the representation of a solid object can have

several interpretations.

0 Surface models. These models were developed to enhance the representation
capability of graphical models for describing complex surfaces that are very
common in the automobile and aircraft industries for instance. Like graphical
models, they only store geometrical data but they are more complete and less
ambiguous. However, a surface model does not necessarily define a solid object as

a closed volume.

a Solid models. These models describe the volume enclosed by the surfaces of a
physical object. They were developed to address the deficiencies of both graphical
and surface models such as the ambiguity problem and the absence of interior and
exterior notions. Various representation schemes exist for solid modelling. The
most common and the best understood representations are the Constructive Solid

Geometry (CSG) and Boundary Representation (B-Rep) schemes.

2.2.1 Constructive solid geometry representation

This scheme describes a physical object as a Boolean expression of solid primitives.
The CSG standard primitives are the parallelepiped (block), the triangular prism, the
sphere, the cylinder, the cone and the torus (Hoffman, 1989). A solid is generally
represented by a tree whose leaves are the solid primitives and whose nodes are the

Boolean operations and rigid motions on these primitives. Figure 2.1 shows
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a simple example of a CSG tree. One drawback of this scheme is that a solid can

generally have several CSG representations and thus it is not unique.

2.2.2 Boundary representation

A solid is represented by a set of boundary entities (faces, edges and vertices), their
adjacency relationship (topology), and mathematical geometric descriptions that
define the geometry associated with the boundary entities (Suh, 1995). The boundary
of an object is segmented into a set of faces. Each face is described by its bounding
edges and the surface on which it is embedded. Each edge is, in turn, represented by
its associated vertices and the curve on which it lies. Vertices correspond to three-
dimensional coordinate points. Figure 2.2 shows the boundary representation for the
object shown in Figure 2.1. In comparison to CSG, the B-Rep scheme has the

advantage that it is both unambiguous and unique.

2.2.3 Discussion

Due to the advantages of B-Rep models over CSG models, B-Rep has emerged as the
dominant representation scheme for solid modelling. B-Rep models are also
commonly used as input data for feature recognition systems. Thus, this scheme is

adopted in this research to represent features and solid models of parts.
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Figure 2.2 Boundary representation of a solid model
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2.3 Feature concepts

2.3.1 Definitions

Shah and Mantyla (1995) define features from a cognitive point of view as “chunks of
knowledge” used by engineers in performing certain tasks. Therefore, features are
necessarily viewpoint dependent and application oriented. For this reason, there is no
universally agreed definition for features (Ji and Marefat, 1997). However, some
classification schemes consider only a subset of features, in particular those related to
part geometry. It is generally accepted that such features represent “the engineering
meaning or significance of the geometry of a part or assembly” (Shah and Mantyla,

1995). In general, these features can be classified as:

0 Form features that describe portions of the nominal geometry of a part. This
concept is used by many researchers in developing feature recognition tools such
as those proposed by Sakurai and Gossard (1990), Brun (1994), Qambhiyah et al.
(1996), Jha and Gurumoorthy (2000), Bhandarkar and Nagi (2000) and Ismail et
al. (2002). Han (1996) further defines a form feature as “a shape macro

constructed with little connection with function or manufacturing”.

o Tolerance features that describe geometric variations from the nominal forms of a

part (Zhang et al., 2000).

o Assembly features that describe relationships between parts in a mechanical

assembly (van Hooland and Bronsvoort, 2000; Sung et al., 2001).
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Shah and Mantyla (1995) propose that form features can be further classified

according to the intended applications, for example:

a Design features (Suh, 1995; Han and Requicha, 1994).

o Fixturing features (Subrahmanyam, 2002).

0 Manufacturing features (Vandenbrande and Requicha, 1993; Chan and Case,
1994; Regli, 1995; Chen and Lee, 1998; Gao and Shah, 1998; Cicirello and Regli,

2001; Han et al., 2001; Marquez et al., 2001; Li et al, 2003).

Manufacturing features, in particular those considered machining features, are studied
by many researchers in the field of AFR. According to Regli (1995) and Ji and
Marefat (1997), machining features are considered either collections of 2D patches on
the boundary of a solid or 3D shapes bounded by a set of surfaces. These two
different interpretations just illustrate the existing difficulties in agreeing on a

common definition for features even when the application domain is well defined.

2.3.2 Taxonomies

Shah (1991) observes that although the number of conceivable features is not finite, it
may be possible to categorise them into different classes that are based entirely on
shape information, rather than on an application domain. For example, Wilson and
Pratt (1988) propose a taxonomy based on the overall shapes of features. In particular,
two feature types that can be represented By a solid modelling system are

differentiated. The first type includes implicit features defined as those that do not
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have a detailed geometric description but whose representations contain sufficient
information to derive it. The second type corresponds to explicit features for which all
the geometrical details are fully defined. Also, these researchers suggest categorising
explicit features based on their overall geometric form as through holes, protrusions,
depressions and areas. Gindy (1989) proposes another classification framework for
which form features are organised according to a hierarchy. In particular, at the top
level of this classification, features are categorised in three generic groups:

protrusions, depressions and surfaces.

Other researchers propose schemes that classify features according to their application
domain. For example, a library of “Material Removal Shape Element Volumes”
(MRSEV5s) is developed by Kramer (1994) to group volumes that can be removed by
machining operations on a three-axis machining centre. Another example of
application-oriented taxonomy is suggested by Xu and Hinduja (1998) where features

are also classified as volumes associated with different machining operations.

Another common approach is to consider only two generic feature types, protrusions
and depressions, that are then further classified depending on the specific
requirements of different application areas (Dong and Wozny, 1988; Han, 1996;

Zhang et al., 1998; Jha and Gurumoorthy, 2000; Owodunni and Hinduja, 2002).

2.3.3 Feature interactions

An important problem that AFR systems should be able to address occurs when
features in a part model do not exist independently from each other. In particular, such

configurations are the consequence of feature interactions. For AFR systems, the
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successful recognition of each feature when they are interacting is a challenging task

(Liet al., 2003).

Shah and Mantyla (1995) utilise the concept of composite feature to cover all the
cases where it is desirable to treat a group of features as a single unit. A composite
feature can be separated into two or more simple (or composite) features that can be
recognised by an AFR system as features in their own right. Simple features are
considered the lowest level features stored in a library and they cannot be further
decomposed into other features present in this library. Two levels of relationships,
recurring and non-recurring, are defined in order to describe the constraints imposed
on a group of features. Recurring composite features are also referred to as pattern
features because they are characterised by circular or linear pattern arrangements.
Non-recurring composite features are made of simpler ones and are referred to as

compound features.

Regli and Pratt (1996) notice the existence of different definitions with regard to the
concept of interacting features. They argue that there is a need for a common
definition that should be independent from a given feature representation scheme. In
particular, they claim that it is important to establish a common conceptual framework
in order to address effectively the problems associated with feature interactions. They
suggest different interactions to be regarded as falling into one of the following three

generic types:
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0 Interference interaction. This characterises an overlap between two or more
features. It results in modifications affecting some of the faces that define each

feature.

0 Adjacency interaction. This is an interaction between features that share one or
more boundary edges or faces in a part. Also, it is possible for two features
belonging to different parts to be affected by such an interaction, in particular for

mating features in assembly models.

o Remote interaction. This interaction does not concern any adjacencies or overlaps
between features but refers to relationships that could be functional or significant

to downstream applications of the design process.

2.3.4 Discussion

The main objective of this research is to develop an AFR method that could be
applied in different domains. Therefore, the concept of form feature is considered the
most appropriate for developing such generic tools because it does not refer to any
particular application domain. In addition, the application-independent taxonomies
that have been reviewed in this section could be used to define a suitable classification
framework that covers all generic types of form features. Finally, it should be noted
that the issues associated with the existence of feature interactions in part models
require a special attention. Any AFR tools should have a built-in geometric reasoning
mechanism in order to identify such interactions and their effects on simple form

features.
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2.4 Automatic feature recognition

2.4.1 Classification of existing approaches

Research in the field of automatic feature recognition started in the early eighties.
Some classifications of the current techniques can be found in the reviews carried out
by Henderson et al. (1994), Ji and Marefat (1997), Han et al. (2000) and Li et al.
(2003). In general, the following categories are used to classify the existing
approaches although there is sometimes an overlap between AFR techniques applied

in some systems:

0 Syntactic pattern recognition approach. The geometrical information about a
feature is represented as an expression that defines a sequence of geometric
primitives. During the recognition process, an expression based on these
primitives is formed for the part studied. Then, this expression is parsed to
identify its feature patterns. Most of the AFR systems applying syntactic pattern
recognition techniques are developed for recognising features only in 2D shapes

or 2D cross-sections of solids.

0 Graph-based approach. The faces of a feature are represented by the nodes of a
graph and the adjacency information between these faces is shown by the arcs
connecting the nodes. Additional information can also be included into the graph
such as face orientation. During the recognition process, the B-Rep model of a
part is translated into a graph that is then searched using sub-graph isomorphism

for matches with pre-defined feature graphs.
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0 Volumetric decomposition approach. First, a volume is obtained by subtracting a
part from its convex hull or from its initial workpiece (stock) and then, this

volume is decomposed into features.

0 Rule-based approach. A set of necessary and sufficient conditions for the patterns
found in features is defined. During the recognition process, these rules are

applied on data stored in the solid model of a part.

0 Hint-based approach. The ‘generate-and-test’ strategy is applied during the
recognition process to form hypotheses/hints about the existence of features in a
part. Then, a validation procedure based on additional geometric and topological

constraints is carried out to confirm or discard the generated hints.

0 Neural network-based approach. Using a set of feature examples, a neural network
is trained to recognise the geometric and topological patterns that are specific for a

given feature.

The following section reviews in more detail three groups of AFR techniques that are

of interest to this research: the rule-based, hint-based and neural network-based

approaches.
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2.4.2 Rule-based approach

2.4.2.1 Description

This AFR approach was among the first to be investigated due to the success of expert
systems in other application areas. Knowledge about a given domain can be
represented as rules that are processed by the inference engine of an expert system in
order to solve specific problems. In a similar way, information about feature patterns

could be represented by rules stored in the knowledge base of an AFR system.

2.4.2.2 Methods and their applications

Henderson and Anderson (1984) define a feature as a production rule. Rules are
written by determining the necessary and sufficient conditions for a given feature and
by expressing them in a logic statement. For example, a rule for a simple cylindrical

hole can be expressed as:

IF a hole entrance exists,

AND the face adjacent to the entrance is cylindrical,

AND the face is convex,

AND the next adjacent face is a plane,

AND this plane is adjacent only to the cylinder,

THEN the entrance face, cylindrical face and plane comprise a cylindrical

hole.

This approach is implemented in a system that can recognise cavity features (holes,

slots and pockets) from a B-Rep model of a part.
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Hummel (1989) develops a system to classify pre-identified machining features. A
feature is defined using an object-oriented language. A production rule is
automatically generated for each feature by entering its definition into the system.
Also, a hierarchical taxonomy is presented that starts with the description of generic
features and then defines more specific ones. During the recognition process, a
previously identified machining feature is first classified as a generic one and then

incrementally reclassified along the hierarchy until no more rules can be activated.

Donaldson and Corney (1993) propose a system for recognising three-axis machining
features. An algorithm is developed to extract potential features from a graph
representation of a B-Rep part model. The set of potential features is stored in a
Prolog database as predicates. Then, a set of production rules and a backward-

chaining inference mechanism are used to classify and validate each potential feature.

Vosniakos and Davies (1993) develop a feature recognition framework for B-Rep
models. This framework consists of two main parts. In particular, a feature definition
part where features are described as Prolog predicates and a feature matching part to
carry out the recognition task. Features are recognised by matching successively the
feature definitions against the part description. If a match is found, a feature is
recognised, otherwise the next feature definition from the knowledge base is selected
and the matching process repeated. This framework is implemented only for the hole

feature class.

Chan and Case (1994) integrate a solid modelling system with a rule-based system to

implement a feature recognition method and a learning method. Recognition of
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machining features is performed by applying a set of rules on a B-Rep model
representing a volume to be removed by machining operations. The authors argue that
for recognising interacting machining features successfully, the system should also
possess learning abilities because interactions can occur in an unpredictable way.
Thus, when a particular feature cannot be recognised, the user of the system can input
faces of this feature into a learning agent through a graphical interface. Once all the
information required by the learning agent is provided, a new rule for the feature can
be formed automatically and added to the rule base of the system.

In the work described by Dong and Vijayan (1997), the “Overall Removable Volume”
(OVR) corresponding to the material to be removed from the stock is determined first.
Then, the OVR is manually decomposed into “General Machining Features” (GMFs)
while insuring that as much material as possible can be removed in each machine set-
up. Finally, the shape of each GMF is analysed by applying a set of feature

recognition rules that are embedded in an expert system.

2.4.2.3 Discussion

The rule-based AFR approach is a simple and successful method for recognising
isolated and not very complex interacting features. Another important advantage is
that rules can be easily understood by human experts for verification or development
purposes. However, none of the techniques reported propose a formal mechanism for
rule definition. Another limitation of these techniques is the exhaustive nature of the
recognition process because repeated searches for features are carried out on the solid
model of a part. In addition, it is difficult to define rules for all conceivable feature

configurations or to expand an existing rule base while maintaining its consistency.
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2.4.3 Hint-based approach

2.4.3.1 Description

This approach is also known as evidence-based (Ji and Marefat, 1997) or trace-based
approach (Regli, 1995). It was introduced to tackle the problem of recognising
interacting features by simulating the intuitive nature of the decisions made by
humans when identifying such features. In particular, it is based on the assumption
that certain feature patterns should exist in the solid model of a part in spite of the fact
that some of their characteristics may be destroyed by the interactions. Therefore,
such patterns could be used to generate hypotheses about the presence of features in a

part model.

2.4.3.2 Methods and their applications

Vandenbrande and Requicha (1993) suggest the concept of hint for recognising
machinable regions in a solid model when features interact. Hints are based on
“feature presence rules” and correspond to combinations of faces that satisfy certain
topological and geometrical relationships. The feature recognition process follows a
generate-and-test strategy that is carried out in three steps: hint generation, feature
completion and feature verification. In the first step, some production rules are
executed when certain face patterns and geometrical conditions corresponding to hint
definitions are detected in the B-Rep model of a part. Then, these hints are classified
into three groups: promising, unpromising and rejected. In the second step, the
promising hints are processed further in order to identify additional data about the

potential features associated with them. For each hint, the largest feature volume that
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does not intrude into the part is also generated. Finally, the feature verification step

checks whether the identified features are machinable.

This hint-based approach is further developed by Han (1996). Supplementary
algorithms are employed to make the recognition process more robust. It is also
suggested to apply Certainty Factor techniques from the field of uncertain reasoning
to rank hints that could lead to valid features. In addition, the recognition process is
carried out incrementally in order to be incorporated into a concurrent engineering

environment,

To solve the problem of recognising depressions formed by interacting features,
Marefat and Kashyap (1990) develop a method that employs a ‘hypothesis
generation-elimination’ approach. This approach is similar to the generate-and-test
strategy proposed by Vandenbrande and Requicha (1993). In particular, a graph
representation called the cavity graph is suggested to describe the topology and
geometry of depressions present in a B-Rep model of a part. Hypotheses are first
generated by decomposing the graph of a part into cavity graphs corresponding to the
patterns of the features to be recognised. These hypotheses are further processed by a
rule-based system to eliminate the incorrect ones. In order to deal with interacting
features, the authors introduce the concept of virtual links to augment the cavity
graphs and thus, to generate additional candidate hypotheses. To determine correct
virtual links, a hypothetical set of links possibly omitted from the cavity graph is first
formed. Next, the Dempster-Shafer theory is applied to combine geometrical and

topological evidences about each link. Then, a clustering technique is employed to
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add these links to the cavity graphs. Finally, new hypotheses about the presence of

features are generated using these modified graphs.

This approach is further developed by Trika and Kashyap (1994) who introduce a
geometric reasoning algorithm to determine the virtual links. In addition, the authors
prove that all correct, and only correct, virtual links are generated and thus, the
developed algorithm is both sound and complete. In other words, this means that the
algorithm does not propose invalid features for a given part (soundness) and it
recognises all the features present in it (completeness). However, the part domain that

the system can handle is restricted to objects that do not have inclined faces.

Ji and Marefat (1995) also apply the approach proposed by Marefat and Kashyap
(1990). The only difference is that the set of correct and necessary virtual links is
found by exploiting Bayesian probabilistic propagations. First, a hypothesis space is
constructed by obtaining a complete and minimal set of potential virtual links. This
hypothesis space is further pruned to obtain a hierarchical singly connected belief
network that serves as the medium for fusion and propagation of the evidences. The
same authors (Marefat and Ji, 1997) further improve this approach by employing
multi-connected belief networks in comparison with the previously adopted singly

connected networks.

Ames (1991) introduces the concept of “featurettes” to develop a system that
performs feature recognition on B-Rep models. A featurette is defined as a very low-
level information about the CAD data such as a set of parallel edges or a set of faces

that have similar attributes. In this way, a featurette acts like a hint that indicates the
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presence of a feature in a part. The recognition process follows the generate-and-test
strategy. In particular, it is decomposed into small and simple steps, which are
determined by a featurette hierarchy. The recognition proceeds along this hierarchy by

searching and testing featurette hints until a correct feature is derived.

Regli (1995) utilises the concept of hints from Vandenbrande and Requicha (1993)
but employs the term “trace” to describe it. A trace is defined as partial information
produced by an instance of a feature that remains in the solid model of the part in
spite of potential interactions. Also, definitions are presented for a class of volumetric
features that describe material removal volumes produced by machining operations on
a three-axis vertical machining centre. The basic components of his approach are a
finite set of feature types and finite sets of traces. Each trace is associated with a
geometric reasoning algorithm for constructing an instance of a feature from the B-

Rep information of a part model and the stock material.

Gao and Shah (1998) present a hybrid approach for automatic recognition of
machining features from B-rep solid models that combines graph-based and hint-
based feature recognition techniques. First, a graph including different topological and
geometric attributes of a part is constructed. Then, this graph is further decomposed
into sub-graphs by deleting the nodes that represent either a stock face or a convex
hull face. If a sub-graph does not match the graph of an isolated feature, it is assumed
that it represents a group of interacting features. In this case, a graph is further
decomposed in one or several Minimal Condition Sub-graphs (MCSGs). Each MCSG
is considered to be a feature hint because it represents a trace left by an original

feature. Next, the different MCSGs are completed in order to find the lost parts caused
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by feature interactions. This is achieved by generating all the virtual links of a MSCG
using a geometric reasoning mechanism similar to that proposed by Trika and
Kashyap (1994). Based on the classification of the virtual links, the corresponding

feature for a MSCG can be retrieved.

Li et al. (2000) also propose a hybrid method based on hints, graph manipulations and
an artificial neural network for recognising interacting machining features in a B-Rep
model. A graph of the part studied is first constructed and some virtual links are
generated following certain face conditions. The set of virtual links forms a Virtual
Link Graph (VLG). The concept of F-Loop composed of a set of machining faces is
introduced and considered a feature hint. Then, F-Loops Graphs (FLGs)
corresponding to potential features are built based on the graph of a part and the VLG.
Finally, the graph information of the FLGs is transformed into two-dimensional
matrices and used as an input to a neural network that classifies the FLGs into six

different types of features.

2.4.3.3 Discussion

The introduction of hint-based methods has represented a step forward in solving the
problem of recognising interacting features. However, most of the proposed systems
restrict the use of hints to the domain of machining features. In addition, the main
difficulty in developing AFR systems based on this approach is the need to define an
appropriate set of hints for each considered application domain. In particular,
determining the characteristics of a hint and assessing its relevance in recognising a
given feature is not a trivial task. To achieve this, system developers have to

understand fully which feature patterns are still present in a part in spite of
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interactions. Thus, a major limitation of the current hint-based methods is that the hint
definition task is always carried out manually. This could explain why the hint
concept is mainly applied in the machining domain and not in other application areas

as it would require an input from different experts.

2.4.4 Neural network-based approach

2.4.4.1 Description

An artificial neural network is a computational model inspired by the structure and
activity of the brain. It generally consists of a number of interconnected processing
elements or neurones. Information processing takes place through the interaction of
the neurones, each sending excitatory or inhibitory messages to other neurones. The
structure of a neural net is determined by the arrangement and the nature of the
connections between the neurones. A learning algorithm governs how the strengths or
weights of these connections are adjusted to achieve a desirable overall behaviour of
the network. In particular, two main types of learning algorithms are distinguished,
supervised and unsupervised. During the training of a network, a supervised learning
algorithm adjusts the weights of the connections according to the difference between
the desired and actual network outputs corresponding to a given input. An
unsupervised learning algorithm does not require the desired outputs to be known.
During training, only input patterns are presented to the neural network, which
automatically adapts the weights of its connections to cluster the input patterns into

groups with similar characteristics (Pham and Liu, 1995).
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2.4.4.2 Methods and their applications

Peters (1992) identifies neural networks as promising components to support the
development of a generalised feature recognition system where the user can define
his/her own features. The network presented is trained to recognise four different
classes of two-dimensional profiles (square, rectangle, parallelograms and slots).
During the training stage, some values are extracted from each feature examples and
stored in a vector that is input to the neural net. During the feature recognition stage,
candidate geometric subsets corresponding to potential features are first extracted
from the representation of a part. Then, these potential features are coded into vectors

that are input to the network for classifying them into one of the four feature classes.

Prabhakar and Henderson (1992) also discuss the application of neural networks for
AFR. They suggest constructing a network for each feature example belonging to a
given library. Each network is then trained to recognise a pattern defined by rules
specifying conditions for the presence of a feature. During the recognition process,
topological and geometrical information is extracted from a B-Rep part model in
order to construct its adjacency matrix. Each element of this matrix represents the
relationships between faces of a part. Finally, this matrix is fed one row at a time to
each neural net to recognise the features. This system can also tackle certain cases of

feature interactions.

Hwang and Henderson (1992) propose an approach for recognising features in a B-
Rep model of a part by applying a single layer perceptron network. During the
training stage, the input data to the perceptron have the format of a “face score vector”

composed of eight elements. Each element is a measure that takes into account
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geometrical information about a face, its edges, its vertices, and its adjacent faces.
The network is trained with the face score vectors of feature examples. During the
recognition stage, first, the score of each face in a part is assessed. Then, the inner
product between a face score vector and a vector composed of the weight values
obtained during training for a given feature is calculated. The output is a parameter
that measures the confidence factor about the presence of a feature. If the value of the

confidence factor is within a pre-defined tolerance, a feature is recognised.

Lankalappalli et al. (1997) notice that for neural networks that require a supervised
learning algorithm, the training set utilised should be representative of the entire
domain studied. However, for problems such as AFR, it may be difficult to include in
the training set all the possible features in a given application domain. Consequently,
if a particular pattern cannot be classified by a network, the training process has to be
executed again. To address this issue, the authors suggest employing a self-organising
neural network based on adaptive resonance theory (ART-2) to cluster similar
features together without supervision. The benefit from using such a neural network is
that it can create a new cluster if a pattern cannot be classified with an existing one.
The scheme used to code features is similar to that suggested by Hwang and
Henderson (1992). The proposed method is implemented and tested with nine

different types of machining features.

Nezis and Vosniakos (1997) also present an AFR system utilising a neural network.
During the training stage, examples of machining features are defined and then, for
each example, topological information is extracted from its B-Rep model to construct

an Attributed Adjacency Graph (AAG). A graph is further translated into a
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representation vector containing twenty elements that are used for training the
network. During the recognition process, the AAG of a B-Rep part model is
constructed and then, by using a set of heuristics, it is further broken down into sub-
graphs that are considered potential features. Then, the representation vector of each
sub-graph is formed and used as an input to the trained neural network to identify its

corresponding feature class.

Similarly to Peters (1992), Chen and Lee (1998) identify neural networks as
promising components to support the creation of generalised feature recognition
systems. Users of such systems could define their own features via a graphical user
interface. The training set utilised by the authors consists of shapes that are
representative of six different types of two-dimensional features relevant to sheet
metal manufacturing. During both the training and feature recognition stages, the
input to the network is a vector that codes information about the line segments that

form a two-dimensional feature.

Zulkkifli and Meeran (1999) report a technique for recognising interacting features
employing two different neural networks. The recognition process starts by searching
a B-Rep part model for volumes that correspond to interacting features. Then, a
Kohonen neural network is applied to cluster the vertices of these volumes and based
on this information, the interacting features are broken down into primitive ones.
Finally, data about the edges and vertices of theses primitive features is used as an
input to a multilayer feedforward neural network for recognising the classes to which

the primitive features belong.
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Marquez et al. (2001) integrate an AFR system employing a feedforward neural
network into a system that performs a manufacturability analysis on B-Rep models of
reinforced plastic parts. The scheme adopted by the authors to code features is again
similar to that used by Hwang and Henderson (1992) but some modifications are
introduced for the face score calculation and the vector formation. They tackle the
problem associated with supervised learning, highlighted by Lankalappalli et al.
(1997), by creating one neural network for each feature class. In this way, although it
is necessary to train every neural net to recognise a specific feature, the system can

easily be expanded for recognising new features.

As mentioned in the previous section, the work on the recognition of interacting
machining features in a B-Rep model presented by Li et al. (2000) combines the use
of hints, graph manipulations and an artificial neural network. The same authors (Li et
al., 2003) develop this approach further by employing an ART-2 network. During the
training stage, eight different examples of machining features are defined and then,
each of them is coded into a vector containing nine elements. The training does not
require any supervision and it stops after a certain number of iterations, when the
vectors used as inputs are distinguished by the network into eight different types.
Then, during the recognition stage, the ART-2 neural net is utilised to classify

extracted features into one of these eight categories.

2.4.4.3 Discussion

The utilisation of neural networks for AFR has attracted a significant interest in the
last decade. Their learning capability is beneficial for solving AFR problems because

they can be trained to recognise the characteristic patterns of a pre-defined set of
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feature classes. Thus, system developers do not need to design recognition procedures
and also, the capability of an AFR system to recognise new or user-defined features
can be easily extended. However, neural networks can only deal with numerical
inputs that are not always suitable to represent geometrical and topological data stored
in CAD models. In addition, during the recognition stage, a neural network acts as a
‘black box’ and consequently, the classification model created during the training
stage is not easily interpretable by domain experts for validation or interpretation

purposes.

2.5 Summary

This chapter has reviewed different 3D modelling techniques together with two
commonly used representation schemes for solid modelling. The main notions
associated with the concept of feature have also been discussed. A classification of
existing AFR approaches has been presented and three of them, the rule-based, the
hint-based and the neural network-based approaches have been analysed in detail. The
main conclusion is that AFR systems implementing these three approaches could be
applied only to recognise features that are domain-specific. Thus, the main knowledge
gap that this research should address is the development of AFR methods that are

domain independent.

-31-



Chapter 3 - Extraction of feature patterns

3.1 Introduction

The main problem addressed in this chapter is the knowledge acquisition associated
with the development of rule-based systems for feature recognition. A method is
proposed for automatic formation of feature recognition rules. This method employs
the ‘learning from examples’ concept for creation of rules that define the
characteristic patterns for the existence of features in CAD models. In particular, these
rules are formed by applying an inductive learning algorithm on training data
consisting of feature examples. Thus, the creation of a rule base for AFR systems

could be automated.

This chapter starts with the definition of a feature in the context of this research
Then, basic concepts of inductive learning together with the algorithm employed in
this study are presented. In the following section, the specific requirements imposed
by the utilisation of this machine learning technique for acquisition of rules for feature
recognition are discussed. Finally, one possible implementation of the proposed

method is described and its application demonstrated on an illustrative example.

3.2 Feature definition

The proposed method for automatic formation of feature recognition rules should not
be limited to a particular domain. Thus, a feature should be considered a form feature,

a generic geometrical shape that does not relate to any specific application.
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Also, it is important to determine how features could be described using Boundary
Representation (B-Rep) entities because this representation scheme is employed in
this research for storing geometrical and topological data about solid models. For this,
the feature concept proposed by Sakurai and Gossard (1990) is adopted. A feature is
defined by these researchers as a single face or a set of contiguous faces, called a face
set. Thus, a feature composed of m faces is represented by the notation {f,,..., f,,}. In
addition, the B-Rep entities used to describe a feature are given specific names. In

particular:

0 A face belonging to a feature is called a feature face.

0 An edge shared by two feature faces is considered an internal edge.

o A face adjacent to a feature face, but not included in the topological structure of a

feature, is called a boundary face.

0 An edge shared by a feature face and a boundary face is called a boundary edge.

3.3 Inductive learning

Inductive learning algorithms are a subset of machine learning algorithms. A common
characteristic of machine learning techniques is that they identify hidden patterns in
training data in order to automatically build classification models for a given
application domain. The inductive learning algorithms create models that are

represented as rule sets or decision trees. The rule sets include IF-THEN rules that can
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be readily interpreted by humans and can be used for automatic generation of rule

bases for expert systems.

In this chapter, the objective is to develop a method for automatic formation of feature
recognition rules. Thus, an inductive learning algorithm that forms classification
models represented as rule sets is adopted. In particular, the algorithm utilised in this
study is DynaSpace (Bigot, 2002). It belongs to the RULES family of inductive
learning algorithms (Pham and Dimov, 1997). Like all algorithms for inductive
learning, DynaSpace requires the input data to be in a specific format. In particular,
the data files presented to such algorithms should contain a collection of objects, each
belonging to one of a number of given classes. Each object is described by its class
value and by a set of attribute values represented as a vector. Each attribute value in
this vector can be either discrete or continuous. Table 3.1 gives an example of a
training set that can be used for inductive learning. By applying the DynaSpace

algorithm on this data set, the IF-THEN rules shown in Table 3.2 are generated.

The next section discusses the requirements to form training sets for acquisition of

feature recognition rules that are suitable for inductive learning.
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Object Attr_1 Attr 2 Attr_3 Class
1 0 -1 0 1
2 1 0 0 1
3 1 -1 1 2
4 1 1 1
5 0 0 1 1
6 1 1 1 2
7 1 -1 0 1
8 0 -1 1 2
Table 3.1 An example of a training set
Rule Rule description
1 |IF Attr 3=0THEN Class =1
2 |IF Attr_ 2 =-1 AND Attr 3 =1 THEN Class =2
3 |IF Attr 2=0THEN Class=1
4 |IF Attr 2 =1THEN Class =2

Table 3.2 Rule set for the data in Table 3.1
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3.4 Training data creation

3.4.1 Proposed approach

To generate the required training data in the context of this research, the following

three steps are proposed:

o First, a taxonomy that represents the feature classes for a given application
domain is defined. For example, the proposed method could be applied to generate
rules for recognising machining features that are associated with particular
manufacturing methods/machining strategies. In such a case, a taxonomy
reflecting the specific requirements of this application should be adopted. Such a
domain specific classification groups the data available for each feature class and
guides the search for pattern recognition rules. However, the proposed method
should not be limited to any particular application. For this reason, only the most
generic part of a feature taxonomy that could be considered application-
independent is discussed in this research. In this context, the top-level
classification of features into protrusions, depressions or surfaces proposed by

Gindy (1989) is adopted in this study because it satisfies this requirement.

o Second, a set of B-Rep models representing examples of features is designed for
each class of a given taxonomy. For example, in the machining domain, a feature
class could cover all B-Rep models for slot features. A systematic approach is
adopted in designing the B-Rep models of features. In particular, this approach is
applied to balance the representation of the different feature classes in the training

set. As a result, the weight of all feature classes during the induction process will
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be the same. The systematic approach adopted in this research for designing the
B-Rep models of features is described in more detail in Section 3.5.1.1 and an

example to illustrate it is provided.

a Third, the B-Rep models of features are converted into data files that are suitable
for inductive learning. This conversion is necessary because these models cannot
be used for inductive learning directly. In particular, the input data for such
algorithms should be in a specific format. The next section discusses the
requirements for converting the B-Rep models of features into training sets that

are suitable for inductive learning.

3.4.2 Data format

The data files for inductive learning should contain a collection of objects. In this
research, these objects are called characteristic vectors. Each characteristic vector is
composed of attributes that store information about a given B-Rep feature model.
Thus, each vector also belongs to the feature class of the considered model. The
feature classes determine the taxonomy that is applied to classify features in a
particular application domain. Thus, to classify all characteristic vectors belonging to
a given class, a coding scheme for storing the information contained in B-Rep feature

models should be implemented very carefully.

In general, the definition of a coding/representation scheme to encapsulate meaningful
data about a specific engineering domain is not a trivial task. It is beneficial that such
a scheme includes as many attributes as possible (Nezis and Vosniakos, 1997).

However, if a representation scheme includes irrelevant attributes, this would have a

-37-



Chapter 3 Extraction of feature patterns

detrimental effect on the algorithm classification performance (Liu and Motoda,
1998). One possible solution could be to rely on domain experts in identifying

attributes that should be considered (Liu and Motoda, 1998).

In the field of AFR, a systematic approach for defining a representation scheme that
codes feature information from B-Rep models does not exist. Therefore, in this

research the following general guidelines are adopted in designing such a scheme:

a The specific characteristics of the application domain should be taken into account
in deciding which attributes should be selected for inclusion in a characteristic
vector. For example, if machining features are considered, the characteristic
vector should be composed of attributes that represent geometrical forms

associated with removal volumes.

o The attributes included in a characteristic vector should provide sufficient
information to solve a recognition task at a particular level of abstraction. For
example, if an AFR system needs to reason about local properties of features, the
characteristic vector should include attributes that represent low-level feature

information such as data associated with a feature face.

a A characteristic vector should include as many attributes as possible whilst
avoiding the inclusion of misleading attributes. In this research, an example of
such an attribute is ‘the date at which a feature has been created’. Such
information is obviously not relevant to feature recognition tasks. However, this

does not necessarily mean dismissing attributes that are considered irrelevant by a
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domain expert because an interesting aspect of inductive learning techniques is
their capability to generalise and create rules that are not ‘obvious’ at first for

experts.

Thus, to design a representation scheme that is suitable for solving a particular feature
recognition task, it would be useful to consider initially a broad range of attributes.
Therefore, in the next section, different types of attributes that could be used to code
B-Rep models of features are identified in order to decide what scheme to be adopted

in this research.

3.4.3 Feature attributes

Most of the representation schemes for coding B-Rep feature models are developed
for creating training data for neural network-based AFR systems. Thus, these schemes
are a valuable source of information about attributes that are important in AFR. Other
coding schemes are implemented in the feature recognition techniques presented by
Yuen and Venuvinod (1999) and Dereli and Filiz (2002). These techniques rely on
such schemes for comparing previously extracted groups of faces in a part against a
finite feature database where all the features classes of interest are listed along with

their feature codes.

The study of these different schemes shows that the attributes considered for coding
B-Rep models of features are very diverse and represent information about B-Rep
entities at different levels of abstraction. These could be a face set, a single face, a

loop of edges, a single edge or a vertex. In addition, according to Yuen and
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Venuvinod (1999), the data associated with these B-Rep entities falls into the

following categories:

o Topological data. This high-level data provides information about the adjacency

of faces, edges and vertices that compose a feature.

@ Coarse geometrical data. This category describes data such as the geometric form

of a feature face and the concavity or convexity of its edges.

o Fine geometrical data. This low-level data includes information such as

dimensions, analytic geometric equations and angular orientations.

Table 3.3 attempts to classify attributes that can be derived from or attached to B-Rep
data and hence utilised for defining a representation scheme for coding features. In
this table, different B-Rep entities are categorised into five levels of abstraction to
help in designing an appropriate coding scheme for inductive learning. The following
section describes the approach adopted in this research for designing such a scheme

for extraction of feature recognition rules.

3.4.4 Proposed strategy for feature coding

In this research, two levels of abstraction are considered in identifying the feature
patterns that are representative for a given application domain. Thus, two sets of
training data are formed in order to extract two different sets of rules. The first level
of abstraction considers feature faces as single entities. Then, at the second level, the

face set that defines a feature is analysed.
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Topological data Coarse geometrical data| Fine geometrical data
e Number of faces that |e Parallelism
compose a feature e Perpendicularity
Face set Number of faces that Coaxiality

bound a feature

e Number of concave
or convex edges

e Number of adjacent |[e Face type (geometry) (e Face area
faces .
e Face concavity e Surface
Single face e Number of concave representation
or convex edges
e Number of loops
e Number of edges e Loop concavity
e Inner or outer loop
Loop
e [Edge geometry e Curve representation
(curve) o Edge length
Single edge e Edge concavity e  Angular value
e Number of incident ¢ Coordinate points
edges
Vertex

Table 3.3 Feature attributes
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In the first training set, each characteristic vector stores information about a single
feature face. Thus, several vectors are extracted from each B-Rep feature model. The
attributes belonging to single faces (see Table 3.3) are of a particular interest in
designing a coding scheme at this level of abstraction. The rules generated from such
training data are referred to as the first set of rules. They define feature patterns that
are extracted from partial representations of a feature. Such rule bases could be
applied in AFR systems that search for patterns suggesting the existence of a feature,

such as hint-based systems.

However, such a coding scheme has some limitations. In particular, it is difficult to
identify a set of attributes that does not lead to code duplications, i.e. characteristic
vectors that are completely identical, having the same values for all their attributes
and, at the same time, belonging to different feature classes. In the machine learning
domain, such code duplications are called noise. Thus, such vectors in the training set
should be avoided because they introduce ambiguity and could prevent inductive
learning algorithms from generating valid rules for some feature classes. This coding
approach is criticised by other researchers, i.e. Nezis and Vosniakos (1997). In
particular, they claim that it is difficult to solve the code duplication problem even by

introducing more complex coding schemes for single faces.

Another problem with such a coding scheme is associated with the intrinsic nature of
a feature. In a B-Rep model, any individual feature face represents a low level of
information about a feature. Although a feature has been defined previously as a
single face or a set of contiguous faces, it is generally the case that a feature is made

of more than one face. Thus, this low-level representation scheme should be
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complemented by another scheme of a higher level of abstraction. The training data
generated at this second level of abstraction should contain characteristic vectors that
include information about the face set defining a feature. Thus, in this second training
set, only one vector is created for each B-Rep feature model. In this research, the rules
generated from such training data are referred to as the second set of rules. The
attributes associated with a face set should be used to design this coding scheme (see

Table 3.3).

3.5 lllustrative example

This section discusses a possible implementation of the proposed method for
automatic formation of feature recognition rules that represent patterns identified in
B-Rep feature models. First, the feature taxonomy that is adopted in this
implementation is outlined and then, two representation schemes are described for
coding feature information at the defined two levels of abstraction. The DynaSpace
inductive learning algorithm is then applied on the training data created using theses
two representation schemes to generate two sets of rules. Finally, some issues

associated with the implementation of this method are discussed.

3.5.1 Training data creation

3.5.1.1 Feature taxonomy

In this implementation, the adopted taxonomy categorises features belonging to the
machining domain (see Table 3.4). It is inspired by the classification of machining
features proposed by Pham and Dimov (1998). The top level of this taxonomy groups

machining features into two generic types, depression or protrusion, that are
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Generic
feature type Feature group | Feature class |Symbol B-Rep feature models
/. j
Rectangular po_re . @ @
Pocket
Obround po_ob - ‘ ‘ @
Blind hole ho_bl i @ @ Eﬁ @
Hole =
Depression Through hole ho_th @ @ @
Throughslot  [sith | [¥] @ 7 @ﬂ (=
Slot
Non-through slot | sl _nt @ @ @ @ @
Step Step st @ % @ @ @
Circular pr_ci ﬁ % 6% % @
Protrusion |Protrusion
v | 0 B D IES

Table 3.4 Taxonomy of machining features
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considered application-independent. The second level clusters the features into five
sub-groups that correspond to the machining strategies that should be employed for
their manufacture. Hence, this intermediate level is not anymore application-
independent. The third level defines the feature classes depending on their
geometrical profiles. The B-Rep feature models considered in this study are also
represented in Table 3.4. They are constructed using a solid modelling system and
thus, they define closed volumes. However, a single face or a face set forming a
feature does not necessarily define a closed volume. For this reason, a B-Rep feature

model is composed of feature faces and also faces that belong to a base protrusion.

A systematic approach is implemented to construct the B-Rep feature models shown

in Table 3.4 applying the following three guiding principles:

o First, to balance the importance of each feature class in the training set, the same
number of models is created for each class. The importance of this was already

highlighted in Section 3.4.1.

o Second, the same base protrusions are used for each class in order to minimise any
influence that they could have on the inductive learning process. Thus, if a given
base protrusion is utilised for creating a model for one feature class, it is also

utilised for the other classes.
o Third, these base protrusions are different in order to vary the topological and

geometrical neighbouring configurations of features. This is required because the

number and the type of boundary edges of a feature could differ.
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For simplicity, only planar and cylindrical faces are used to construct the feature
models shown in the table. However, the proposed method is not restricted to these
types of geometric entities only. Also, it should be noted that not all faces included in
a B-Rep feature model have to be considered in designing a coding scheme. For
example, the faces defining the base protrusions in these models should not be taken
into account during the coding because they will not provide additional information
for the feature recognition process. Even, the vectors created for these faces could
introduce a noise in the training sets. That is why the relevant faces in the B-Rep
models are selected by end-users to form the characteristic vectors for each feature.
The process of designing a feature coding scheme at both levels of abstraction is

discussed in the next section.

3.5.1.2 Feature coding schemes

Characteristic vector for a feature face

At this level of abstraction, information about individual feature faces (see Table 3.3)
is used to define a coding scheme. In particular, topological and coarse geometrical
data about a single face are utilised in designing this scheme. In this example, the
following attributes are considered to be of importance during the feature recognition

process:

o Attribute 1 (faceTy): the face type. This attribute describes the geometry of the
surface defining a face. As mentioned earlier, the face types considered in this

example are either planar or cylindrical.

0 Attribute 2 (nEd): the number of edges defining the face border.
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o Attribute 3 (faceCv): the face convexity. There are three possible values for this
attribute, neutral (i.e. planar), concave or convex. According to the definition
given by Marquez et al. (2001), a face is convex if a straight line between two
points on the face is enclosed inside a solid model, otherwise it is concave. This
definition is extended to cover also the case when a straight line between two

points on a face lies completely on it. Such a face is considered neutral.

o Attributes 4 & 5 (nP1Ad & nCIlAd): the number of adjacent faces that are planar

and cylindrical, respectively.

o Attributes 6 to 9 (nCcEd, nCvEd, nSccEd and nScvEd): the number of edges of a
face that fall into one of the following four edge categories (Sandiford and
Hinduja, 2001). An edge shared by faces a and b is considered:

e Concave, if the solid angle between faces a and b is between 180° and 360°;

e Convex, if the solid angle between faces a and b is between 0 and 180°;

e Smooth concave, if faces a and b are tangential to each other, and if both are
concave or one is concave and the other is neutral;

e Smooth convex, if faces a and b are tangential to each other, and if both are
convex or one is convex and the other neutral.

Figure 3.1 illustrates these four cases.

0 Attribute 10 (ccAd): a measure obtained by dividing the number of concave edges
of the adjacent faces by the total number of such faces. This attribute was added to
the list of attributes because the other nine attributes were not sufficient to

represent all different types of faces in the training data with unique characteristic
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Smooth
concave edges

Smooth
convex edges

Figure 3.1 Edge categories

-48 -



Chapter 3 Extraction of feature patterns

vectors. Thus, this attribute was included in the list to bring additional information

about geometrical and topological characteristics of the feature faces.

Other attributes could also be included in the representation scheme at this level of
abstraction to satisfy the specific requirements of any particular application. It is not
necessary to restrict the number of attributes that are considered initially for a given
application as long as they provide additional information to distinguish one face from
another. The inductive learning algorithms could be used to assess the ‘information
content’ of each attribute and after a few induction cycles, the most important of them
for a given feature recognition task could be selected and in this way, the total number

of attributes reduced.

Characteristic vector for a face set

Attributes belonging to a face set defining a feature are utilised to design a coding
scheme at this level of abstraction. The attributes that should be considered in
designing such a scheme are listed in Table 3.3. These include topological and coarse
geometrical data used to define a given feature. The following attributes are identified
to be of importance in distinguishing one feature from another at this level of

abstraction:

a Attribute 1 (nFa): the number of feature faces.

o Attribute 2 (nP1Fa): the number of planar feature faces.
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o Attribute 3 & 4 (nCcClFa & nCvClFa): the number of cylindrical feature faces

that are concave and convex, respectively.

o Attribute 5 & 6 (nCcEd & nCvEd): the number of concave and convex internal

edges.

Again, other attributes could also be considered if required in designing a coding

scheme at this level of abstraction.

3.5.1.3 Extraction of characteristic vectors

Each of the 45 B-Rep feature models in Table 3.4 was analysed using an automated
procedure to extract the attribute values included in the characteristic vectors at both
levels of abstraction. Figure 3.2 illustrates this procedure and shows the resulting
vectors for a model belonging to the blind hole feature class (ho_bl). In total, 160
characteristic vectors were created when individual feature faces were considered.
The encoding at the second level of abstraction resulted in 45 vectors. For both cases,
the characteristic vectors formed from the B-Rep models are stored in a text file for
further processing by the DynaSpace inductive learning algorithm. In this way, two
different training sets are created. Before the algorithm is executed on this data, it is
pre-processed to eliminate the noisy vectors. In particular, this pre-processing
removes vectors that are identical but, at the same time, represent features belonging
to different classes. In this example, the attributes considered proved to be sufficient

to create unique vectors for each feature class at both levels of abstraction.
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Figure 3.2 Extraction of characteristic vectors
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3.5.2 Rule formation

The DynaSpace algorithm adopted in this research is applied successively on both
training sets to extract rules that depict feature patterns at both levels of abstraction. In
particular, DynaSpace created 15 rules from the first training set that encapsulates
information about individual feature faces. This set of rules is shown in Table 3.5. For

example, Rule 6 in this set is:

IF nEd = 2 AND nCcEd = 2 THEN featureClass = ho_bl

This means that a face with two edges that are both concave indicates the existence of

a feature face belonging to a blind hole in a B-Rep model.

The application of the same algorithm on the second training set that includes vectors

representing face sets resulted in 9 rules (see Table 3.6). For example, Rule 4 in this

set states:

IF nPIFa =1 AND nCcEd =2 THEN featureClass = ho_bl

This means that a face set with one planar face and two concave edges represents a

blind hole feature in a B-Rep model.
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Rule Rule description
1 IF ccAd=3 THEN featureClass = po_re
2 |IF 2<=nPlAd<=4 AND nCvEd=1 AND nSccEd=2 AND ccAd=2 THEN featureClass = po_ob
3 |IF nClAd=2 AND nCcEd=4 THEN featureClass = po_ob
4 | IF faceCv=cc AND nCcEd=0 THEN featureClass = ho_th
5 | IF faceCv=cc AND nPlAd=2 AND nCvEd=1 THEN featureClass = ho_bl
6 |IF nEd=2 AND nCcEd=2 THEN featureClass = ho_bl
7 | IF faceCv=cv THEN featureClass = pr_ci
8 |IF nEd=2 AND nCcEd=0 THEN featureClass = pr_ci
9 |IF nCcEd=1 AND nCvEd=3 AND ccAd=2 THEN featureClass = pr_re
10 |IF nClAd=0 AND nCcEd=0 AND nSccEd=0 THEN featureClass = pr_re
11 |IF 2<=nCcEd<=3 AND ccAd=2 THEN featureClass = sl_nt
12 |IF nEd=5 AND nCvEd=2 THEN featureClass = sl_nt
13 |IF 5<=nEd<=6 AND 3<=nCvEd<=4 THEN featureClass = sl_th
14 | IF faceCv=ne AND 2<=nPlAd<=4 AND 1<=nCcEd<=2 AND ccAd=1 THEN featureClass = sl _th
15 |IF faceTy=pl AND 1<=nPlAd<=4 AND ccAd=0 THEN featureClass = st

Table 3.5 First set of rules

-53.-




Chapter 3 Extraction of feature patterns

Rule

Rule description

IF nCcEd=8 THEN featureClass = po_re

IF nPIFa=3 AND nCcClFa=2 THEN featureClass = po_ob
IF nFa = 2 AND nCcClFa=2 THEN featureClass = ho_th
IF nPIFa=1 AND nCcEd=2 THEN featureClass = ho_bl
IF nCvCIFa=2 THEN featureClass = pr_ci

IF nPIFa=5 AND nCcEd=0 THEN featureClass = pr_re
IF nPIFa=4 THEN featureClass = sl_nt

IF nPIFa=3 AND nCcCIFa=0 THEN featureClass = sl_th

IF nPIFa=2 THEN featureClass = st

Table 3.6 Second set of rules
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3.5.3 Implementation approach

3.5.3.1 B-Rep data formation

The feature models in Table 3.4 were designed using the Pro/Engineer™ CAD system
(PTC, 2001). Because the Pro/Engineer™ native data could not be used directly to
form the required training sets, each feature model was then exported into a STEP
file. The architecture of the STEP standard is briefly explained in Appendix A. The
Application Protocol 203 (AP 203) developed in this standard for the exchange of
mechanical parts and assembly data was used in this research to generate STEP files.
A benefit from exporting the feature models designed with Pro/Engineer™ into STEP
files is that B-Rep data could then be extracted from such files. Another benefit is that
AP 203 is supported by most commercially available CAD packages and thus, the
feature models could be created using other CAD packages and not only

Pro/Engineer™,

3.5.3.2 B-Rep data processing

An example of a STEP file generated using Pro/Engineer™ for a blind hole feature
model is shown in Appendix B. Such a file should be processed further in order to
extract the data required for forming the characteristic vectors. This processing was
carried out automatically by the successive application of different parsers, one for
each B-Rep entity of interest. These parsers were created utilising the Java Compiler
Compiler™ (JavaCC, 2003) tool. JavaCC™ is a parser generator that converts a given
grammar specification into a Java™ program in order to recognise
structures/definitions satisfying that grammar. In particular, the JavaCC™ grammar

specification for STEP physical files presented by Ma (2003) was extended to develop
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the different parsers. An example of such an extended grammar file developed for this
research is given in Appendix C. When a parser progresses through the STEP file of a
feature model and finds a B-Rep entity of interest, Java™ procedures specially
implemented to extract information about this entity are triggered. Thus, these
procedures automatically generated the characteristic vectors associated with each

feature model.

3.6 Summary

This chapter has described an original method for automatic formation of feature
recognition rules by applying inductive learning techniques on feature examples.
Furthermore, the utilisation of geometrical and topological data at two levels of
abstraction has been proposed to generate a comprehensive rule base for feature
recognition. These rules define feature patterns either for individual faces or face sets
for each considered feature class. In addition, a possible implementation of this
method has been presented that includes specially developed procedures for automatic

extraction of characteristic vectors from B-Rep feature models.

The method developed is generic as it could be employed to generate feature
recognition rules for different application domains. The performance of AFR systems
that utilise the proposed method depends on two factors. The first factor is the
capability of the designed representation scheme to encapsulate relevant information
about features in a given domain. More specifically, the number and information
content of the attributes used to define the characteristic vectors at the selected levels
of abstraction influence their representation power. The second factor is the adopted

feature taxonomy and the feature models employed to create the necessary training

-56-



Chapter 3 Extraction of feature patterns

data. These two aspects determine the quality of the data used to represent a particular
domain. Thus, it is very important to verify the feature recognition capabilities of the
generated rule sets. This issue together with different strategies for carrying out

feature recognition are discussed in the next chapter.
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4.1 Introduction

The previous chapter introduced a method for generating feature recognition rules at
two levels of abstraction. The rules are extracted from a training set containing B-Rep
models of feature examples by applying inductive learning techniques. This chapter
presents an AFR method that benefits from the rule extraction techniques described in
Chapter 3. The method provides a formal reasoning mechanism for feature
recognition by combining the ‘learning from examples’ concept with the rule-based
and hint-based feature recognition approaches. In particular, the generate-and-test
strategy applied in the hint-based approaches is employed to simplify and speed up
the search for features in B-Rep part models. This addresses one of the main
limitations of rule-based techniques, the need to carry out a computationally
expensive exhaustive search for features. Thus, the proposed AFR method combines
the advantages offered by inductive and deductive techniques and therefore is called

hybrid.

To apply efficiently this method in different application domains, the main difficulty
is associated with the acquisition/definition of hints. Traditional techniques for hint
definition rely on inputs from system developers. These techniques imply a good
understanding of the patterns that indicate the existence of a specific feature in a CAD

model. Thus, new techniques are required to automate the definition of feature hints.
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This chapter starts with an overview of the proposed feature recognition method.
Then, a technique to automate the definition of feature hints is presented. Finally, a
procedure for recognising features in B-Rep part models is discussed and its

application is demonstrated on an illustrative example.

4.2 Overview

The proposed AFR method includes two main processing stages, learning and feature
recognition. During the learning stage, rules and feature hints are extracted from
training data. Then, these hints and rule bases are utilised in the feature recognition
stage to analyse B-Rep part models and identify their feature-based internal structure.
In this section, a brief overview of these two processing stages is provided. Then, the
hint definition and feature recognition processes are discussed in detail in Sections 4.3

and 4.4, respectively.

4.2.1 Learning process

The main process is composed of three consecutive sub-processes (Figure 4.1):

o Training data creation. This sub-process was described in the previous chapter. It
includes the design of B-Rep feature models in accordance to a given feature
taxonomy and then the extraction of characteristic vectors from each of them. As a
result of this process, two different data sets are created that represent features at

two levels of abstraction.
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Figure 4.1 Learning process
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o Rule formation. This sub-process was also described in the previous chapter. The
DynaSpace algorithm is applied on each of the two training sets of characteristic
vectors to generate two sets of rules. These two rule bases define feature patterns

found in the B-Rep models of feature examples.

0 Automatic hint definition. In this research, it is proposed to extract the hints from
the rules generated for every feature class present in a given taxonomy.
Conceptually, a hint is a suggestion that a specific feature is present in a part
model and also, it is an incomplete representation of a feature from an
implementation point of view (Han, 1996). Therefore, the rules that define feature
patterns at the first level of abstraction (partial geometrical representation of

features) are utilised to define the hints.

It would be also possible to define feature hints by applying the same approach on the
second set of rules that represents patterns based on geometrical or topological
relations between feature faces. For example, a parallelism between a pair of planar
opposing faces could be used as a hint for a slot feature as suggested by
Vandenbrande and Requicha (1993). However, in this research, the focus is on
identifying hints that utilise data belonging to individual faces. The feature hints
defined in this way are computationally less expensive to apply because it is required
to analyse only the geometrical or topological properties of single faces. This is very
important taking into account that the hints are utilised for a quick search for faces

indicating the existence of specific features in B-Rep part models.
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4.2.2 Feature recognition process

The results of the learning process are two sets of rules and a set of feature hints.
These rules together with the hints are employed in this research to recognise features
in B-Rep part models. In particular, the proposed feature recognition method
‘reconstructs’ features in stages relying initially on an indicative information in the
form of a hint. This could be interpreted as a process of ‘entity growing’. Shah (1991)
first proposed the entity growing terminology for feature recognition. In particular, it
is described as a process in which, once a feature has been recognised it is removed
from a part by adding or subtracting a volumetric shape that corresponds to this

feature.

In this research, the idea of entity growing is defined differently. An analogy is made
between the feature recognition process and a simplified process of vegetal plant
growing. The structure of a vegetal plant could be described as a stem with foliage
attached to it. Accordingly, the simplified plant growth process should include the
following two steps. First, the development of a seed into a stem and then the growth
of the leaves from this stem. Similarly to this, the feature recognition process includes

the following four sub-processes (Figure 4.2):

0 Seed detection. Individual faces matching the definition of feature hints are

detected. A face identified in this way is an incomplete representation of a feature

and it is considered only a seed from which a feature might be constructed.
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Figure 4.2 Feature recognition process
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o Stem development. A seed constitutes only a hypothesis for the presence of a
feature in a B-Rep part model. Such hypotheses have to be analysed further in
order to validate them. The first set of rules generated during the learning stage is
employed to carry out this validation because it includes patterns associated with
individual feature faces. A seed that satisfies the geometrical and topological
constraints defined by the rules for a particular feature class is considered one of
the possible stems for that class. These stems constitute the starting point from
which the search continues for other faces in order to complete the reconstruction
of a given feature. Also, it should be noted that a stem again represents only a
hypothesis for the existence of a feature in a B-Rep model. This is due to the fact
that a stem corresponds to an individual face in a part and as such, to an
incomplete representation of a feature. However, any hypothesis associated with a
stem has a higher probability to result in a successful reconstruction of a feature in

comparison with a hypothesis represented by a seed.

0 Leaf development. This sub-process is analogous to the development of the
foliage from a vegetal plant stem. In particular, the faces surrounding a face
labelled as a stem are analysed to decide whether they could be aggregated
together to form a face set representing a potential feature. A face that is selected
in this way is called a leaf. The output of this sub-process is a face set, composed

of faces labelled either as stems or leaves, that is called a plant.

0 Feature validation. A plant needs to be checked against the second set of rules to

verify whether it represents a valid feature. This rule set is employed because its

rules represent geometrical and topological relations between faces in valid
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features. This validation is necessary because a plant is still only a hypothesis, a
potential feature generated from a stem. If the output of this process is positive, a

feature is recognised.

4.3 Automatic hint definition

4.3.1 Motivation

Several feature recognition strategies could be implemented by applying the two rule
sets formed during the learning process. For example, one strategy could employ the
first set of rules only. In this case, the rules would be applied to individual faces in a
B-Rep part model to group them in clusters of adjacent faces that could form a
feature. The feature patterns defined in this rule set represent the geometrical and
topological properties of single faces, which are low-level geometrical entities. Thus,
it is possible for a face, which is not a ‘building block’ of a feature but whose
properties are similar to those of a feature face, to match some of these patterns. This
suggests that the sole reliance on the first set of rules does not provide an adequate

solution to most feature recognition tasks.

Another possible feature recognition strategy could rely only on the second set of
rules. In this case, an exhaustive search for features would be performed by applying
these rules to all possible groupings of faces in a B-Rep model of a part.
Unfortunately, the number of such groupings in a part composed of » faces increases
exponentially with the increase of » and is equal to 2" —1 (Owodunni and Hinduja,

2002). The set of possible groupings G can be formally specified as follows:
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G ={G,,G,,....G,,...,.G,} 4.1)
where G, represents all the combinations of i faces. It is obvious that such an

exhaustive search would be computationally very expensive. As mentioned in Chapter

2, this is one of the main limitations of rule-based approaches.

In order to overcome the shortcomings of the above strategies, it is proposed to apply
the concept of hints and to employ both sets of rules during the feature recognition
process. In particular, it is suggested initially to search only for faces that are
considered hints for the existence of features in the part model. Then, faces matching
the definitions of such hints are validated against the first set of rules to identify those
from which face sets can be formed. Finally, the second set of rules is employed to
verify if such face sets represent valid features. This strategy reduces the initial search
space significantly because the seeds only, rather than all the faces in a given B-Rep
model, are considered in forming these face sets. The main difference between this
implementation of the hint concept and others is the proposed technique for automatic
definition of hints. In particular, the set of hints is extracted from the first set of rules
that represents patterns based on the geometrical and topological properties of

individual feature faces (see Figure 4.1).

4.3.2 Methodology

4.3.2.1 Heuristic measure

All inductive learning algorithms require a measure for assessing the quality of the
generated rules. This is usually a statistical measure that is utilised in these algorithms

as a search heuristic. In this research, the hints are identified by analysing the
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conditions in each rule. In particular, a measure is utilised to assess the importance of
each condition for a given feature class and thus to select which of them are to be
used as hints for that class. This assessment is done by using the data available in the
training set that is comprised of the characteristic vectors of individual feature faces

and does not require any input from system developers.

The objective for such a statistical measure is to identify conditions that cover a
maximum number of characteristic vectors for a given target feature class, while their
coverage of those not associated with that class is minimised. To address this

requirement, the consistency metric reported in Bigot (2002) is employed:

p
p+n

Consistency = “4.2)

where p is the number of characteristic vectors covered by a condition and belonging
to the target feature class and » is the number of characteristic vectors covered by a

condition and not belonging to the target feature class.

The measure adopted in this research should also take into account some other
considerations in assessing the importance of a given condition. In particular, in the
training set studied, it is possible several vectors to be generated from each feature
model. Consequently, a condition covering one vector per every model of a given
feature class would be preferable to a condition covering a higher number of vectors
and, at the same time, not covering at least one vector for each model of this class.

The ratio E, between f, the number of feature models for a given feature class

covered by a condition, and F, the total number of feature models for this class, is

used to make this assessment:
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E = (-fi) 4.3)

Equation 4.3 defines a linear function that evaluates the condition importance in the
context of their coverage of the feature models. In particular, this function helps to

identify such conditions that cover at least one vector per model for a given feature

class. To give E, a higher weight in measuring this condition performance, the
function is redefined to specify an exponential increase of E, by raising it to the

power of F:

E, = (El )F = (%) (4.4)

as shown graphically in Figure 4.3.

To benefit from both metrics, Consistency and E,, a new heuristic measure M that

combines them is designed:

o P (L) (.5)

4.3.2.2 Hint extraction

The hint extraction requires initially the rules for each feature class in the first set of
rules to be grouped together. Then, each condition in this subset of rules is analysed
using M. In this way, the importance of each condition is assessed and then they are

ranked according to this measure.
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Figure 4.3 The graph of E, and E, for F=5
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The application of the hint concept for feature recognition requires one or several
hints for each feature class to be defined. For example, in the approach proposed by
Regli (1995), a finite set of hints associated with each feature for a given application
domain is identified. Accordingly, the technique applied in this research should allow

several hints per feature class to be defined.

The technique proposed in this study allows a primary feature hint and a set of
secondary feature hints to be identified for each feature class. The highest ranked
condition for each subset of rules of a given class is considered the primary feature
hint for that class. Ideally, the value of E; (Equation 4.4) for such a hint should be
equal to 1. This ensures that the condition defined by this hint is satisfied by every
feature model for that class in the training set. Any other condition ranked below the
primary feature hint and, at the same time, whose value of E; is equal to the one
obtained for the primary feature hint can also be considered a hint. Such conditions
form the set of secondary feature hints. It is also possible to define a threshold value
for E, above which conditions could be used to form the set of secondary feature
hints. The adoption of a threshold value is not discussed in this research because this
is a parameter that should be defined by a user depending on the specific requirements

of a given application domain.

4.3.3 lllustrative example

In the previous chapter, a method for extracting rules from B-Rep feature models was
described. The method was implemented by applying the DynaSpace algorithm on
training data that include machining features belonging to the classes defined in Table

3.4. The first set of rules extracted from this data (see Table 3.5) is used in this
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example to illustrate the proposed hint definition technique. This technique was

implemented again using the Java™ programming language.

The primary feature hints obtained for all the feature classes covered by these rules
are shown in Table 4.1. In addition, Figure 4.4 depicts the technique when it was
applied on rules defined for the blind hole feature class (ho_bl). The primary feature
hint for a blind hole is defined as ‘a face whose number of edges equals two’,
‘nEd=2’. The value of E; for this hint is equal to 1. Thus, every feature model of that
class in the training set has a face satisfying this condition. The set of secondary
feature hints is also formed and it includes all the remaining conditions because E; for
each of them is also equal to 1. The hints in this set are ranked according to the valﬁe

of M as it is shown in Figure 4.4.

4.4 Feature recognition process

4.4.1 Methodology

An overview of the feature recognition process was provided in Section 4.2.2. The
recognition of a particular feature in a B-Rep part model is considered an ‘entity
growing’ process analogous to the growth of a vegetal plant. This section discusses in
detail each of the four sub-processes that take place during the feature recognition
process. They are defined as the seed detection, stem development, leaf development

and feature validation sub-processes.
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Feature class

Primary feature hint

Condition Description

po_re ccAd=3 A face whose ccAd measure equals three.
po_ob nSccEd =2 A face with two smooth concave edges.
ho_bl nEd =2 A face whose number of edges equals two.
ho_th nCcEd =0 A face with no concave edge.
pr_ci faceCv =cv A convex face.
pr_re nCvEd =3 A face whose number of convex edges equals three.
sl _th nCvEd =3 A face whose number of convex edges equals three.
sl_nt nCcEd =2 A face with two concave edges.

st ccAd=0 A face whose ccAd measure equals zero.

Table 4.1 Primary feature hints
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4.4.1.1 Seed detection

The aim of this sub-process is to detect individual faces in a B-Rep model that are
considered hints for the existence of features in a part. Every face identified in this
way is called a seed. As a result, the initial search space for features is divided into a
set of smaller search spaces. Each of these sub-spaces contains all of the faces in a
solid model that match the description of a given hint. Figure 4.5 illustrates the seed
detection sub-process. It is possible for a face to match the descriptions of the hints of

more than one feature class. For example, in this figure, f; was detected as a seed for

two feature classes. This is due to the fact that a hint represents only a hypothesis for
the presence of a feature in a part model. In particular, each hint in this research is
only a partial definition of a given feature class. Therefore, a face could satisfy the
conditions of more than one hint, hence this face could be considered a seed for more

than one feature class.

4.4.1.2 Stem development

A validation step is necessary to confirm or discard any hypothesis associated with a
seed. This implies that a seed may or may not be considered further for constructing
from it a feature. During the learning process, the feature hints are derived from the
first set of rules and therefore, this rule base is employed in validating each seed
during the stem deve'lopment sub-process. When a set of seeds for a particular feature
class is analysed, first, all the rules of that class are identified and then applied to
validate each seed. When a seed satisfies the conditions of a rule, this means that it
meets the geometrical and topological constraints associated with a feature face and

thus, it could be utilised to construct a feature of a given class. Such a seed is then
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called a stem because it is used to identify its surrounding faces and to form a

potential feature by aggregating these faces together.

4.4.1.3 Leafdevelopment

Once a stem has been identified, it is then utilised to build a face set that could form a
feature. Such a face set is called a plant and is composed of faces labelled either as

stems or leaves. Figure 4.6 illustrates the stem and leaf development sub-processes.

The leaf development sub-process is performed by a geometric reasoning algorithm

that uses a stem as input. In Figure 4.6, two stems, f, and f;, for a feature class are

successively analysed by the algorithm. For each of these stems, one leaf, a face, is
identified and thus, two plants, {f,f,} and {f;,f}, are formed. This analysis is

carried out by verifying whether some of the surrounding faces to a stem could be
used to construct a plant. The algorithm stops when pre-defined termination
conditions are reached. Such conditions should be defined by taking into account only
the top level, the most generic part, of the feature taxonomy discussed in Chapter 3.
Thus, the proposed geometrical reasoning mechanism would not be restricted to any

specific taxonomy.

The top level of the 'taxonomy adopted in this research classifies features as either
protrusions, depressions or surfaces. However, the termination conditions are
restricted to protrusion and depression features only. Surface features are not
considered and thus, the proposed algorithm is not valid for them. Two termination
conditions are defined for stopping the algorithm. The utilisation of one or the other

condition depends on whether the feature class of the considered face set corresponds
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to a protrusion or depression. Similarly to Sakurai and Gossard (1990), the boundary
edges of a depression feature are defined as a closed sequence of convex edges.
Inversely, the boundary edges of a protrusion feature are defined as a closed sequence
of concave edges. Following these definitions, a termination condition is reached
when the constructed face set is bounded by one of these two closed sequences of

edges.

Figure 4.7 illustrates the geometrical reasoning algorithm that is utilised during the
leaf development sub-process. The first step tests if the stem input to the algorithm is
already included in an existing plant for the considered feature class. If the output of
this test is negative, a new plant composed of the stem is created. Next, an iterative
process takes place for aggregating more faces into this plant. In this iterative process,
the faces that are adjacent to the faces in the plant and, at the same time, that are not
included in that plant, are analysed. This analysis determines if the edges shared
between such adjacent faces and faces in the plant correspond to the internal edges for
a feature. For each adjacent face considered, if the output of this analysis is positive, it
is called a leaf and is appended to the plant (the face set formed so far). Conversely, if
the output is negative, it means that the face shares a boundary edge with one of the
faces in the plant. Therefore, this face cannot be appended to the face set and it is
considered a boundary face to the plant. This procedure is recursively applied to all
adjacent faces that are considered potential leaves for a given plant. When no more
faces can be appended to the plant, the termination condition for the created face set is

satisfied and the leaf development process stops.

-78 -



Chapter 4 A hybrid feature recognition method

' START ,

A

/ Input: A stem 7

Is the stem
included in a plant
for the feature
class studied?

Create a plant and append the
stem to it

/

Is the termination
condition satisfied?

Append adjacent faces sharing
internal edges with faces in the plant

Figure 4.7 Geometrical reasoning algorithm for the leaf development sub-process
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4.4.1.4 Feature validation

The second set of rules, that includes patterns defining geometrical and topological
relations between feature faces, is applied to validate the plants formed during the leaf
development sub-process. One possible outcome of this validation could be that the
face set defining a given plant satisfies all the conditions in a rule and thus, the feature
constructed with the faces in this plant is considered recognised. This means that the
plant meets all geometrical and topological constraints that are associated with a face
set defining a valid feature of a given class. The other possible outcome could be that
the plant is not validated by the rules due to three possible reasons. The first is that
each plant is only a potential feature, just a hypothesis constructed around a stem and
thus, a plant may fail to be validated. The second reason could be that the plant
constitutes a valid feature whose class is not included in the taxonomy adopted for a
given application. Therefore, this taxonomy should be extended. Finally, it is possible
that the plant constitutes a valid feature for one of the classes of a given taxonomy
but, at the same time, the topological and geometrical configuration of this plant is not
covered by the existing rules for that class. In such a case, the coverage of these rules

should be extended.

The coverage of an existing rule set could be increased by considering the plants that
are not validated to belong to the feature class of the closest rule. Figure 4.8 provides
an example showing how the distance, D,’f , between a rule R and a plant P could be
computed in a two-dimensional space. In this figure, each cross corresponds to a
characteristic vector in a training set from which the second set of rules is extracted.
Also, all the vectors shown belong to the same feature class. The rectangle represents

the area covered by a given rule. The dashed line illustrates the distance between the
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Figure 4.8 The distance D} between a rule R and a plant P
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rule and the plant not validated by it. This distance indicates the likelihood of a given
plant to be a valid feature of a given class. Thus, the user of the system is provided
with two options: to reject or accept the plant studied as a valid feature. In the second
case, a new feature model should be added to the training set of the considered feature
class. Then, by executing the learning process again, a new rule base can be

automatically generated.

In this research, the distance measurement between a rule, R, and a plant, P, is defined

as follows (Bigot, 2002):

Dy = /chdc +§dd (4.6)

where Z is the sum of the continuous attributes and Z is the sum of the discrete
c d

attributes of the characteristic vector of P. The value d, is defined for each

continuous attribute as follows:

o If the value of the i" attribute in the characteristic vector is outside the condition
range for this attribute in a rule:

: qu V i Vi . i ) 2
d - min\\}/, — rfzaxkl,ll fs —meR|
Ve =V

min

4.7

a Else:

d, =0 (4.8)

Where: ¥, is the value of the i attribute of the characteristic vector; Vmax!, and

Vmin}, represent the range defined by the condition for the i attribute in rule R; V'
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and V' are the maximum and the minimum values of the i™ attribute among all the

min

vectors present in the training data. Finally, the value d, is defined for each discrete

attribute as follows:

a If ¥V, =V, then:
dd =0 4.9)
o Else:

d, =1 (4.10)

4.4.2 lllustrative example

The proposed feature recognition method was implemented using the Java™
programming language. Both sets of rules obtained in Chapter 3 (see Table 3.5 and
Table 3.6) and the hints defined in Section 4.3.3 are utilised in this illustrative

example by the developed prototype system.

4.4.2.1 Test part

A test part (see Figure 4.9) which has been used by other researchers (Marquez et al.,
2001) is utilised to validate the capabilities of the prototype system. According to the
taxonomy of machining features defined in Chapter 3, this part contains one circular
protrusion, one non-through slot, three through holes, one through slot, one step, one
blind hole and two rectangular pockets. A 3D model of this part was created using
Pro/Engineer™ and then exported into a STEP AP203 file. The B-Rep data were

extracted from this file by applying the parsers described in Chapter 3. Each entity in
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Figure 4.9 Two views of the test part (Marquez et al., 2001)
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a STEP file has a unique numerical identifier, an integer, associated with it (see
Appendix B). Figure 4.9 shows the identifiers of all faces for the test part. These
identifiers are utilised by the prototype system to keep track of the faces analysed and
also to display the results. For example, for the blind hole feature composed of faces

1008, 998 and 985, the output is the face set {f s> fo0s> foss } -

4.4.2.2 Results

The prototype system recognised all the features of this test part. Table 4.2 shows the
results of the four sub-processes that take place during feature recognition. The
identification of the blind hole feature (ho_bl) is used to demonstrate the step by step

execution of the prototype system.

o Seed detection
In Section 4.3.3, an example of automatic definition of hints for a blind hole was
presented. The result was a primary feature hint defined as ‘a face whose number of

edges equals two’, ‘nEd=2’. The execution of the seed detection sub-process for this
feature class leads to the identification of two faces in the test part, f,,; and f;,
that satisfy this condition. Both faces are bounded by two semicircles and therefore
each of them is considered a hint for the existence of a blind hole feature in the solid
model. These seeds represent the top face of the circular protrusion and the bottom

face of the blind hole respectively.
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pr_ci {frass Jr3s} {fr2ss S st {foas> fr3ss fras} yes
pr_re {fsss ’fese s f814 > f642} {9}
sl_th {fsss> SFose> Ja1as Soar} {fess> Sa14) {fsss> Sa1as Sse1} yes

{flo0s> Soss> fse75 Sos>
sl_nt {/. 9582 f931 } {/ 958 f931 > f97o d f94s } yes

Joos)

{fo0s> Ses6 > Seor> Sorrs Usso> fon} yes

st fid {f(,ss:fsm:fm}
642 {f891 } no

Table 4.2 The results of the feature recognition for the test part in Figure 4.9
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a Stem development

Next, these two seeds are validated against the first set of rules defined for the blind

hole feature class. Seed f,,;, the top face of the circular protrusion, fails this
validation because there is no rule that covers the characteristic vector of this face.

The other seed, fq, the bottom face of the blind hole, is successfully validated as a

stem for forming a plant.

o Leafdevelopment

This sub-process adds two leaves to the stem, £, ,to form a plant composed of three

faces, fips> Sfoos aNd foqs . Figure 4.10 illustrates the steps involved in identifying the

leaves belonging to this plant.

o Feature validation
The plant formed during the leaf development sub-process is successfully validated
using the second set of rules for the ho_bl feature class. In particular, the

characteristic vector of this plant is covered by the rules of that class. As a result, the

blind hole composed of faces f,, fo0s and foq, is recognised.

4.4.2.3 Discussion

It should be noted that the results presented in Table 4.2 were obtained using only the
primary feature hints. Thus, these hints were sufficient to recognise all the features

present in the test part. In addition, as already mentioned, theoretically, a face could

match the feature hints of more than one class. For example, the face f,,, of the test

part matches not only the hint for a blind hole but also that for a non-through slot.
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START
A stem for the
/ Input: A stem /__._ ho_bl feature class:
Jioos

Is the stem
included in a plant

for the feature
class studied?

Create a plant and append the
stem to it

y

Is the termination
condition satisfied?

Append adjacent faces sharing
internal edges with faces to the plant

A plant for the f998 @
/ Output: A plant /_.__ ho_bl feature class:
{ﬁOOS 4 f;98 ’ f;85 }
> Jroos

y

END

Figure 4.10 An example of leaf development for a ho_bl feature
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This demonstrates once more that a seed is just a hypothesis for the presence of a
given feature in a part model and that further analysis is required to verify this. In this

example, the hypothesis that f,,, indicates the existence of a non-through slot in the

model was not validated during the stem development sub-process. As stated before,
the leaf development sub-process is limited to protrusion and depression feature types
and does not cover surface features. The test part considered in this study does not
include surface features and therefore all machining features in it were recognised

according to the taxonomy adopted in this illustrative example.

The plant, {f,,,}, was rejected as a step during the feature validation sub-process.

Thus, the distances between the characteristic vector of this plant and the rules in
Table 3.6 were computed and the results are shown in Table 4.3. The closest rule to
this plant is rule R9 for the step feature class. Based on this information, the user of
the system should decide if this particular plant could be considered a valid step
feature. If the decision is yes, the feature model corresponding to this plant is added to
the training set of the step feature class and two new rule sets are generated by
executing the learning process. Thus, in case such a plant is encountered again by the

system, it will be recognised automatically as a step feature.

4.5 Summary

This chapter has presented a new hybrid AFR method that employs the ‘learning from
examples’ concept with the rule-based and hint-based feature recognition approaches.
The method applies the rule extraction techniques proposed in Chapter 3. A technique

has also been devised for automatic definition of feature hints for the classes of a
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Rule number | R9 R4 RS R7 R6 R1 RS R3 R2
Feature class st ho bl | sl th | sl nt | pr re | po re| pr ci | ho th |po ob
D: 020 | 025 | 0.40 | 0.60 | 0.80 | 1.0 1.0 1.05 | 1.08

Table 4.3 The distances between the plant {f,,,} and the rules in Table 3.6
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given taxonomy. This technique overcomes one of the main limitations of other
existing implementations of the hint-based methods for which the hint definition task

is always carried out manually.

Another important characteristic of the proposed AFR method is that it is not tied to a
particular application domain as most of the feature recognition approaches reviewed
in Chapter 2. Rules and also feature hints could be defined automatically for any
application as long as the features of interest are represented in the considered
taxonomy. Thus, new rules and hints could be added easily to the knowledge base of
the system to extend its application area. Moreover, given the fact that hints are
derived from IF — THEN rules, they are readily understandable by the users. This is
beneficial to system developers because this offers them a new insight into the hint

definition process.

Patterns indicating the existence of a particular feature in a model are extracted
automatically and reflect the training data available at any particular moment. Thus,
the rule sets cover only those areas in the feature space that are represented with
characteristic vectors in the training set. Consequently, a new feature could be
recognised if its characteristic vector falls in one of the areas covered by the existing
rule sets. These generalisation capabilities of the inductive learning techniques allow

unseen features, i.e. features that are not included in the training set, to be recognised.
Finally, if the characteristic vector of a plant is not covered by any existing rule, the

likelihood of such a plant being a valid feature could be estimated by computing the

distance between this plant and all available rules in the knowledge base.
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Unfortunately, this distance measurement may not be sufficient to recognise unseen
features that result from feature interactions. Some possible solutions to this problem

will be discussed in the next chapter.
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5.1 Introduction

The previous chapter introduced a hybrid AFR method that combines different feature
recognition approaches. The method was implemented and then tested on a B-Rep
part model composed of features that do not intersect with each other. However, the
recognition of features when they interact is very important for developing robust
AFR systems and, at the same time, it constitutes a major challenge in feature
recognition research (Li et al., 2003). Thus, the problem of recognising interacting
features by applying the proposed AFR method is discussed in this chapter. In
particular, the objective of this research is to suggest, to implement and to test
solutions for recognising such interacting features. Also, it is important that these
solutions are built upon the main idea implemented in the proposed AFR method, in
particular, the application of the ‘learning from examples’ concept with the rule-based

and hint-based feature recognition approaches.

First, the chapter discusses a definition for interacting features together with a
classification of their different types. Then, the shortcomings of the proposed AFR
method for recognising such features are analysed and some solutions are suggested
to overcome these limitations. Following this analysis, a geometric reasoning
mechanism is described for extending the capabilities of this method to tackle the
recognition problems associated with interacting features. Finally, different parts with
such features are studied in order to validate the proposed geometric reasoning

mechanism.
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5.2 Feature interactions

5.2.1 Definition

It is important to define the concept of interacting features in the context of this
research because in the literature, there is no consensus about its meaning. For
instance, this could describe features that do not belong to the same part and that mate
or connect to each other during an assembly operation. This issue is also illustrated by
the fact that several terms are used to define this concept, such as intersecting,

interacting, compound and complex features.

In this research, the concept of interacting features falls into the category proposed by
Regli and Pratt (1996) that characterises interactions by an overlap between two or
more features resulting in modifications affecting some of their faces. In addition, the
geometric form created by such interactions corresponds to the term of a compound
feature introduced by Shah and Mantyla (1995). A compound feature represents a
group of features that is not arranged in a circular or linear pattern and that can be
decomposed into two or more simple features. In this research, the set of considered
simple features is defined by the taxonomy adopted for a given application and they

cannot be decomposed further into other features present in this taxonomy.

The interaction between two or more simple features results in modifications that
affect the geometry of their faces and also their topology. As a result, essential
information for the feature recognition process of the proposed AFR method could be
altered or even removed. Thus, it is important to carry out a systematic analysis of the

possible feature modifications resulting from such interactions.
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5.2.2 Types of feature interactions

This section discusses different approaches for categorising possible types of feature

interactions and based on this, the classification adopted in this research is described.

Joshi and Chang (1988) consider two types of interactions that depend on the B-Rep
entities shared between the interacting features. For the first type, the features only
have common edges and the faces of one of them could be split up. For the other type,
they share a common face and the interaction also splits one of the feature faces. A
classification with two types of interactions is also proposed by Nezis and Vosniakos
(1997). It considers the faces involved in the interaction and groups them into two
different types: internal and external. An internal face represents a feature face and a
boundary face is considered external. Thus, the first type of interaction in this
classification represents compound features having a face that is at the same time an
internal and an external face of different simple features. The second type represents
compound features having a face that is internal for more than one simple feature.
Zhang et al. (1998) consider two other common face modifications that take part
when features interact, in particular, when a feature face is partly removed or when it

is completely divided.

The most explicit and comprehensive description of the possible types of feature
interactions is provided by Gao and Shah (1998). They defined six categories
according to the following three topology variations caused by the interactions:
merging of faces, loss of concave edges and splitting of faces. Merged faces are
defined as those that are shared by more thén one simple feature. To cover all

combinations of topology variations, eight types of feature interactions should be
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considered. However, two variations are not possible as both the splitting of a face
and the loss of a concave edge cannot be present simultaneously. Table 5.1 describes

these six types of interaction and they are illustrated in Figure 5.1.

In this research, the classification proposed by Gao and Shah (1998) is adopted
because it constitutes a comprehensive framework for studying the effects of different
types of interactions in regard to the applied AFR method. The use of this
classification is justified also by the fact that Li et al. (2003) recently applied it for

comparing different AFR approaches.

5.3 AFR method analysis

In this section, the two main processes of the proposed AFR method, learning and
feature recognition, are discussed in order to understand their sensitivity to the
interaction types considered in this research. Also, solutions are suggested to
overcome the shortcomings of these processes when applied to such interacting

features.

5.3.1 Learning process

This process is composed of three consecutive sub-processes:

o Training data creation. B-Rep feature models are created for all classes in a given
taxonomy and then, characteristic vectors at two levels of abstraction are extracted
from these models. To apply this sub-process for recognising interacting features,

one solution could be to modify this taxonomy by including an additional
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Lost concave

Interaction type Merged faces edges Split faces
I No No No
I No No Yes
I No Yes No
v Yes No No
v Yes Yes No
VI Yes No Yes

Table 5.1 Classification of feature interactions (Gao and Shah, 1998)
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(a) Type I
(no splitting/merging of faces (b) Type II
or loss of concave edges) (splitting ofa face)

P

(c) Type III (d) Type IV
(loss of'a concave edge) (merging oftwo faces)

(e) Type V (f) Type VI
(merging oftwo faces & (merging oftwo faces &
loss of'a concave edge) splitting of four faces)

A face belonging to feature A

Legend: A face belonging to feature B

A merged face between two faces belonging to different features

Figure 5.1 Examples of feature interactions (adapted from Gao and Shah, 1998)
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classification level that covers examples of compound features. In particular, the
classes in this additional level would represent examples of interactions between
simple features. However, the systematic identification of all possible
combinations of such interactions is very difficult and even impossible to achieve.

For example, for the six categories considered in this research, if a taxonomy has

n classes of simple features and only first order interactions are studied, 6n’
examples of compound features would be generated. Thus, this approach is not

considered a viable option in this research.

0 Rule formation. In this sub-process, the DynaSpace algorithm is applied on each
of the two training sets created at the previous step in order to generate two sets of
rules. Thus, this sub-process performance does not depend on the types of features

considered, i.e. whether they are simple or compound.

0 Automatic hint definition. Feature hints are defined by applying a heuristic
measure on the first set of rules. As mentioned in Chapter 4, hints could also be
generated by using the second set of rules. This would result in hints that represent
high-level feature properties that may not be altered by interactions. Thus, this
could be an approach for identifying interacting features. However, in this
research, it is decided not to modify this sub-process because the hints extracted
from the first set of rules represent incomplete information about individual
feature faces. In particular, it is considered that such hints should be sufficient to
detect individual faces that are affected by interactions and that at the same time

still exist in the structure of simple features.
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The outcome of this brief analysis is that it is not appropriate to modify any of the
learning sub-processes in order to apply the proposed AFR method for recognising
interacting features. Thus, the feature recognition process should be adapted for

identifying such features.

5.3.2 Feature recognition process

The recognition of a particular feature in a B-Rep part model is considered an ‘entity
growing’ process analogous to the growth of a vegetal plant. In particular, four
consecutive sub-processes take place during the feature recognition process: seed

detection, stem development, leaf development and feature validation.

o Seed detection. Individual faces matching the definition of feature hints are
detected during this sub-process. The introduction of hint-based approaches for
AFR resulted in the first significant progress towards solving the problem of
recognising interacting features (Marefat and Kashyap, 1990; Vandenbrande and
Requicha, 1993). The hint concept is already applied in this research and

therefore, this sub-process does not require any modification.

o Stem development. Any hypothesis associated with a seed is validated or rejected
by employing the first set of rules that define patterns based on the geometrical
and topological properties of individual feature faces. However, this sub-process
is not suitable for recognising interacting features because the rules utilised are
formed from examples of features that do not interact. Thus, it is possible that a
seed could fail this validation stage although it represents a true hypothesis about

the existence of a feature. This is explained by the fact that, as a result of the
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interactions, the geometry and topology of such a seed do not match the patterns
defined in the first set of rules. Thus, it is suggested that this sub-process should
be bypassed and that the seeds should be used, directly, as inputs to the next step -

the leaf development.

0 Leaf development. A geometric reasoning algorithm is employed to generate a
face set (a plant) from a seed instead of using as an input, a stem. It is very
important that this algorithm retrieves a face set that potentially represents a
simple feature. Thus, it would be possible to use the rules that define patterns of
simple features for the validation of this plant. The algorithm utilised in this sub-
process stops when the face set considered is bounded by a closed sequence of
concave or convex edges. For this reason, there are two possible outcomes when

some of the faces in a plant are affected by interactions:

1. The algorithm could form a plant that does not include all faces belonging to a
simple feature. This could result from interaction types II, III, V and VI

because they lead to either the splitting of faces or the loss of concave edges.

2. The algorithm could retrieve a plant that includes faces belonging to different
simple features. This could occur due to interaction types IV, V and VI

because they result in face merging.

Figure 5.2 shows an example of the first case where a step feature is composed of

the face set {f,, f,, f;}. In this example, if either /i or f, is detected as a seed,

then the plant {f,, f,} bounded by a closed sequence of convex edges would be
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Loop ofconvex edges

Figure 5.2 A feature face outside a closed loop of convex edges
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formed without taking f; into account. Thus, a sub-process should be added to

verify that a given plant includes all relevant faces, and only those faces forming a
simple feature. The sub-process that is introduced follows the leaf development

idea and is called plant modification.

o Plant modification. Faces in a plant are analysed in order to detect if they are
affected by feature interactions. Depending on the type of interactions identified, a
plant could either be extended to include more faces or divided to form two or
more different plants. Thus, the output of this sub-process includes one or more
face sets that potentially could represent simple features. This sub-process is

described in more detail in the next section.

o Feature validation. A plant is checked against the second set of rules to verify
whether it represents a valid feature. This rule base includes patterns defining
geometrical and topological relations between faces that are not affected by any
feature interactions. It is not required that this sub-process is modified because the
plant modification carried out at the previous step results in face sets that
potentially could represent simple features. For a given B-Rep part model, it is
expected that the number of plants rejected by this sub-process will be greater
than the number of plants rejected by the AFR method discussed in Chapter 4.

This is due to the fact that a seed, instead of a stem, is utilised to generate a plant.

Figure 5.3 illustrates the proposed feature recognition process together with the
modifications introduced to address the problems associated with the recognition of

interacting features.

- 103 -



Chapter 5 Recognition of interacting features

Seed detection # Feature hints /L—

/

/ A set of seeds /

Leaf development

A

/ A set of plants / Learning process

y

Plant modification

y

/ A set of plants /

A 4

Feature validation <7/Second set of rules;—

Y
Output: A set of
features

END

Figure 5.3 The modified feature recognition process for interacting features
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5.4 Plant modification

A plant is analysed in order to check whether it includes all relevant faces and also
whether it is comprised only of faces defining a simple feature. If this is not the case,
further processing is required to generate from a plant one or more different face sets
that meet this requirement. In particular, a geometric reasoning algorithm is employed
to detect face properties that could be associated with interaction types II to VI. Only
faces affected by interaction type I are not considered because such a feature
interaction does not lead to any merged or split faces or to the loss of concave edges.
Thus, such faces should not prevent the leaf development sub-process from

effectively reconstructing the face set defining a potential simple feature from a seed.

The following face properties indicate the existence of one of the considered five

interactions in a plant:

o Type II interaction (face splitting). Faces f, and f, could be affected by an

interaction of this type if they lie on the same plane and their normal vectors have
the same orientation, and one can be extended to merge with the other face

without intersecting any other face in the part model. Such faces are called type 11

faces and are represented by the notation £ and f,”.

o Type III interaction (loss of concave edges). The effect of this type of interaction

on two planar faces f, and f, is that both are completely in the positive

halfspace of each other and their extensions intersect each other without colliding

with any other face in the part model. The positive halfspace of a face is
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{P(xp,yp,zp)|ax, +by, +cz, >d} where ax+by+cz=d is the equation of
the plane associated with the face and (a,b,c) is its outward pointing normal

I

vector. Such faces are called type Il faces, f" and f,".

o Type IV interaction (face merging). This type of interaction can be identified if a

planar face, f,, shares a concave edge with two other planar faces, f, and f,,

and if these two faces share a convex edge between them. Such a merged face is

called a type IV face, 1) .

a Type V (face merging and concave edge loss). The planar faces f, and f, are
indicative of this type of interaction if f, is completely in the positive halfspace of
f,» while f, is partly in the positive halfspace of f,. In addition, the extension of
f, should intersect f, and divide it completely without colliding with any other
face in the part model. A face that matches the description of f, corresponds to a
merged face and is called a type V face, f, .

w
a b

a Type VI (face merging and splitting). A type IV face, with adjacent faces
matching the description of type II faces, could be the result of this type of

interaction. Such a merged face is called a type VI face, f)".

For simplicity, these face properties are defined only for planar faces, however they

could be extended to include cylindrical and other face types.
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Figure 5.4 illustrates the geometric reasoning algorithm used in the plant modification
sub-process. First, the algorithm tests if a particular face type exists in a given plant. If
this is the case, the structure of the plant is then modified according to the interaction
type detected. The presence of type VI faces is checked first because their properties
are similar to those of the type II and type IV faces. Next, the algorithm searches for

type II to V faces in the plant. The outcome of this sub-process could be:

o The plant is not affected by any feature interactions.

o The initial plant is modified if one or more type II or III faces are identified. Such
a modified plant includes all its original faces plus some others resulting from the
feature interactions. In particular, these additional faces could be a result of type II
interactions that lead to face splitting. Thus, when the characteristic vector for
such a plant is extracted, it includes not only information about its original faces
but also about their corresponding type II faces. These additional faces could also
be a result of type III interactions. In this case, when the characteristic vector of
such a face set is extracted, these faces are considered adjacent to their

corresponding type III faces in the plant.

o The plant is divided into two or more plants if faces of type IV, V or VI are
detected. Such faces result from the merger of faces belonging to different simple
features. Therefore, they should be divided into two or more separate faces
depending on the number of mergers resulting from the feature interactions. These
new faces should then be used to form new plants. Thus, two or more face sets

could be created from the original plant.
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START
/ Input: A plant /

Divide the merged
face(s) and create

Type VI faces Y¢S

Termination
conditions
satisfied?

Append adjacent faces
sharing internal edges
with faces in the plants

/ Output: Two or 7

more plants /

Termination
condition
satisfied?

detected? new plants
Type II faces Yes

detected?

Include

Type III faces additional face(s)

detected? in the plant

Divide the merged

Type IV faces \, Y¢S face(s) and create

detected? new plants

Append adjacent faces
sharing internal edges
with faces in the plant

/ Output: A plant

i SN

=/ Output: Two or /

Type V faces
detected?

/ Output: A plant /

/ more plants [

Y

END

Figure 5.4 Geometric reasoning algorithm for the plant modification sub-process
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The proposed plant modification sub-process was implemented within the prototype
system described in Chapter 4 using the Java™ programming language. Only the
detection of the extension of a face colliding with other faces represented in the part is
carried out manually. In the next section, six parts illustrating the different types of
interactions studied in this research together with two benchmarking parts are used to

verify the proposed extensions to the AFR method.

5.5 |Illustrative examples

In this section, validation studies are carried out on different test parts that include
interacting simple features as defined in Chapter 3, Table 3.4. Thus, it is possible in
these studies to apply the rule sets obtained in Chapter 3 and the feature hints
generated in Chapter 4. The 3D models of the test parts were created using the
Pro/Engineer™ CAD system and then, the B-Rep data were extracted from their

STEP files by applying the parsers described in Chapter 3.

The following sub-sections present six case studies, each of which corresponds to one
of the six interaction types discussed in Section 5.2.2, together with two studies
carried out on benchmark parts. For each of these case studies, the solid model of the
test part is presented and the feature interactions existing in the model are described.

Then, the results of the recognition process are discussed.
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5.5.1 Case study |

The test part utilised in this case study is shown in Figure 5.5 and, according to the
adopted taxonomy, a type I interaction takes place between a through slot

{ /100> J217> fr46} and a step feature {f,,, f,;s}- This interaction does not change the

number of feature faces and internal edges of either feature. Therefore, their
corresponding plants would be formed directly during the leaf development sub-

process.

The results of the recognition process are shown in Table 5.2. The through slot and
the step features were successfully recognised. It should be noted that for the step, the
highest ranked secondary feature hint defined as ‘a face whose surface is planar’,
‘faceTy = pI’ was used because the primary feature hint for that class, ‘ccAd = 0°, was

not satisfied.

The hint ‘ccAd = 0’ relies on a feature attribute that represents the ratio between the
number of concave edges of the adjacent faces and the total number of such faces.
Hints defined using this attribute show some limitations when they are applied to
interacting features. This is due to the fact that the number of concave edges of the
adjacent faces changes as a result of the interaction. Thus, when interacting features
are present in the part model, it would be better not to use hints defined with this

attribute.

It should be noted that some seeds were detected for the rectangular protrusion (pr_re)
feature class. However, the plant generated from them includes all faces of the part

model since no loops of concave edges exist in this part. In this special case, the plant

-110-



Chapter 5

Recognition of interacting features

184 346
334

217
294 /

267
281 199

236

310
302 254

Figure 5.5 The solid model for case study I
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Fe;;;re Set of seeds detected Plant developed Plant modified VF;;:;:; %

{fomi} {fos1> Frou} no

{1} {261} no

: {334} {33} no

ho_th ;f”' ’ff”’ ’ff”"}’ Sise {fisa} {fis} no

254> /3105294 o) (Fus) o

{fa10} {/10} no

{f204} {fosas fosr} no

{fs465 1995 o1 } {3465 S1995 Jo1r } yes

sLeh EERERLS {/f3225 f236} {fs22> f36} no

sl_nt {ar} {175 Srass Fioo} {2175 Saas> oo} no

{frs1} {frs7} no

{10} {310} no

{f251} {fas1> Foo} no

{fos1s Jo17s fa22 So36 {fasa} {254} no

st Sasr> F33a> Frsas S, {/f334} {334} no

Sasas Foss Saros Saon } {fiaa} {fiaa} no

{204} { 2]914 > fzgl } no

{225 Fas6} {322 S 236} yes

{/1995 faas> Sorr } {f199> faass S} no

Table 5.2 Results for case study I
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is automatically discarded before the feature validation sub-process starts because the
part model does not correspond to a feature. When such a case occurs, the seeds

detected are not reported.

5.5.2 Case study Il

This case study illustrates a type II interaction that takes place between a through slot

{foars fraas fras) and a step {fopss fones fois} (see Figure 5.6). This interaction affects

the step feature by splitting one of its original faces into f,}, and f,.

Table 5.3 shows the results of the recognition process. Both features, the through slot

and the step, were recognised successfully. During the plant modification sub-process,
/i

J and f,;, were added into the plants {f,;, f,,} and {f,,} respectively. Then,

these two faces were regarded as a single entity during the feature validation sub-

process.
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Figure 5.6 The solid model for case study II
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Fif::sre Set of seeds detected Plant developed Plant modified vl:liia:lt:tl:d

{308} {f308} no

{fra} {fs} no

{f2s} {JSM,fZQ,f¥ﬂ} no

ho_th ;i:i iff: ,ff;;’ S {fos1} {/f287} no

{fa0} {fa00} no

{6} {fue} no

{fies} {/iss} no

sl_th | {/203 S321> Sfra65 S22} {f?};ﬁ“f;f; J i;i: : f?sléz ’,fzz}} )r,::

sl_nt {f34} {f21> S2465 S3a} {fa215 Saas5 So3a} no

{f246 } {f246 } no

{/1ss} {fiss} no

{fra} {fra} no

{085 Srra> S185 S0 Usos} {08} 1o

st Sas15 F33a5 Jasos Jaars {287} {fasr} no

Srass Souss Jrs2s Fras} {fr03> f22} {fooss foszs Fais) yes

{fas} {fao3> Sonzs Fois) yes

{f321 > f346 > f334 } {f321 > f346 > f334 } no

{260} {/f260} no

Table 5.3 Results for case study II
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5.5.3 Case study lll

Figure 5.7 shows the solid model used in this case study to illustrate an interaction of

type III between a step {f,n, /) and a feature that is not present in the adopted

taxonomy (Table 3.4). This new feature that is composed of faces, fi, fos»> Sos

and f,[7, could be called a passage. The interaction between the step and the passage

results in the loss of a concave edge for both features, in particular the edges between

the original faces f,,, and f,,; and f,,, and f,,, respectively. Thus, each of them

matches the characteristic of a type III face.

The results of the feature recognition process are shown in Table 5.4. The type III
faces of the step feature were identified during the plant modification sub-process.
Then, during the feature validation, the step was recognised by taking into account
that both faces in the modified plant {f)7, f,:} should share a concave edge.

Furthermore, the face set {f,s,, fosss fose> fo1r} that defines the passage was used to

form a plant that was considered to belong to two different classes, sl_th and sl_nt.
During the feature validation sub-process, this plant was even validated as a feature
for one of these classes. This result could be explained by the fact that such a feature

class does not exist in the taxonomy adopted in this research.
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Figure 5.7 The solid model for case study III
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Fe::::sre Set of seeds detected Plant developed Plant modified VF:l:i‘:lt:t: ;
{fs46} {fa46} no
{fos:} {faw} no
{f315} {f3l5} no
ho th {3155 Sr035 Jowr5 S {/1ss} {138} no
- So1s fres Sar35 Srss} {/f203} {leé;, 2171;} no
{f01} s} no
{f3s} {f3s} no
{fon} {35 Saos no

sl_th {f217:f259} {f217>f259’f245’f231} {f2111;’ 2151éaf245’f231} no

sl_nt {foa1> Saus} {31 Sfaass Sz Sasod | {1 Fass» 2111; 5 2151;} yes

{f301} {f301 } no

{f315} {fsls} no

{f346} {f346} no
{fars Faiss S Fros {fos} {f2]7l§’ zg;} yes
st f287 > f328 >f301 > f346 > {fzos } {leolg of2171§ yes

f273’fz45’f259sf188} {fms} {flss} no

{f 287 } {f287 } no

{f 328 } {fszs } no

{fzn’fzsgafzalafns} {lellf/s 2151;a 2315f245} no

Table 5.4 Results for case study III
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5.5.4 Case study IV

This case study focuses on the interaction of type IV and uses the solid model shown

in Figure 5.8. It represents an interaction occurring between two through slots,
{Foos> far7> Focst A {foss fos1> foma} - In this solid model, faces f,y, and f,}; are the

result of the merger of two faces, each of them belonging to one of the considered two

through slots.

Table 5.5 shows the results of the recognition process. One plant only,
{fo17> Saes> Ja31> So03 } » Was first constructed for the through slot feature class. Next,
Jfo; and f,¢s in this plant were identified as type IV faces. The convex edge between

the adjacent faces with which each of them shares a concave edge indicates that they

should be considered divided into two. Thus, the original plant was modified to
construct two new plants {f,, fo17>fosss a0d  {Fo> foz1> fose} that were then
confirmed as valid through slot features. It should also be noted that this result was

obtained by using the highest secondary feature hint for a through slot that is defined

as ‘a face whose number of concave edges equals two’, ‘nCcEd=2".
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solid model for case study IV
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Fz?;:sre Set of seeds detected Plant developed Plant modified vl:iig:; ‘:1
{f334} {/334} no
{fise} {fias} no
{fi} {f322 > f309 no
Io th {3225 faw25 fr09> Sz {f2s6) {965 f 252} no
B Jisa> Sraes Sass Faos } {2} {fas2> S 296 } no
{f100} {faoos fzo} no
{f1s6} {fass} no
{/f252} {f1s2} no
{fzo3’f217’ 268} yes
sLth | {/2175 fass> Sasi> o3} | {f2urs Sases S35 Saos } {f2039f23l’f268 yes
{ o035 Sorr > Fres } no
sLnt | /317 fass> S 2305 Faos} | {F2i7> Sases S35 fos {fzo3>f231>f263 o
{fi22} {fim> foo no
{/ise} {/154 } no
{300} {f309 > 322 ) no
oo fo fo f {206} {frs6> Fox2 no
217> 3225 J 2685 J 2315
st | ST o oes | oS o o) [T Tia) ] w0
Sisa> Faass Jasa> Faos} Uis: fi1 S} =
{f134} {334} no
{2} {fzsz ) 296 6 ) no
{252} {fos2} no
{fr6} {/fas6} no

Table 5.5 Results for case study IV
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5.56.5 Case study V

The solid model used in this case study illustrates a type V interaction between a
through slot {£3s,, fos1» f2es} and a step {f,.,, /o) (see Figure 5.9). This interaction
causes the merger of two faces belonging to these two features into f,,. This also

leads to the loss of the internal concave edge for the step feature that was shared

between f,, and f,,, before the interaction.

The results of the recognition process are shown in Table 5.6. Both the step and the
through slot features were recognised as a result of the changes made to the face set,

{ /237> fa6a» S251}» during the plant modification sub-process. In particular, f,,, was
identified as a type V face and then, divided into two faces since f, , is the only face
that could split it. Thus, two plants {f,s,, foe>fos1} @and {fos,» 7} Were created and
then confirmed as valid through slot and step features respectively. The faces in the
plant {f,.,,f,;} were considered adjacent and sharing a concave edge during the

feature validation sub-process.
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Figure 5.9 The solid model for case study V
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F‘c"l’::s“ Set of seeds detected |  Plant developed Plant modified vﬁ;‘g:t'; Y

{/is2} {/fis2} no

{fas0} {/fo0} no

{1a1} {ia1} no

bo_ty | /> o i) Urer) no

{f3} {fu3} no

{105} {fi05} no

{/f200} {fa00} no

{75 s> Sosi} yes

sl th {f237> Fo6a} {fo37> Fosas Jos1 } {f;;7 S} o

sl_nt {fas1} {fast> So37> Fosat {f::;;'gf?-;f;ﬂ } zz

{fﬁz} {sz} no

{/ﬁo} {ng} no

{/1s1} {fi1} no

{1955 S167> F2095 Fas1 Ufos } {fos } no

st S fiszs Fazrs Jaso {fos1> Fasas Fosi} no

Saa Srar} asro foar S} {fo1> fror} yes

{f3} {fs} no

{f167 } {f167 } no

{fa00} {f200} no

Table 5.6 Results for case study V
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5.56.6 Case study VI

This case study focuses on a type VI interaction, which is illustrated in Figure 5.10.

The solid model includes two through slots, {f,1,, s> fsnzs fass>fory and

{fongs famrs fonos fanss fa} . The original side faces of both simple features are split by
the interaction. In addition, the original bottom faces of the simple features are

merged into one face, f3)).

Table 5.7 shows the results of the recognition process. For the through slot feature
class, one plant was constructed and then, f,,, was identified in it as a type VI face.
Next, the type II faces adjacent to f;,, that lie on the same surface and that have the

same orientation were grouped together. It was assumed that the opposing and parallel

faces should be part of the same face set and this led to the division of the original

plant into  two  different face sets  {fi, fin> fons fausSon)  and

{fonss fosrs fagos fomss fous } - During the feature validation sub-process, each pair of type

II faces was regarded as a single entity and thus, both through slots were recognised.
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Fig,,re 5.10 The solid mode, for case study VI
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Fz‘l‘;;‘sre Set of seeds detected |  Plant developed Plant modified v‘;‘l‘i‘:::e‘:l
{520} {fs20} no
{fin} {fan} no
{fsua} {fsaa} no
{fsa05> Ss6> S2s0> Sar6 5 {/s6} {fsss’ 31712 s frsss foio} no
ho_th | fi315 fssas fass> Sonas {f300} {f 386 31712 ) 31516 ) 3{110 } no
S} {fss6} {fs36> fom> 31516  faao} no
{f3n2} {fs36> Fom2> Foss> foao no
{fus} {Furs} no
{/2%0} {fas0} no
{fit2> fsor> fosa Fott

{faae> Suso> Fras> fsna VamsJoss Jour fu Soas ™

il A Rl P77 ;
fin) 1575 J1395 Fi1s Sro9 yes

s

Vi
{faso> fanrs Faass Jasa» {ffm’ o S i no

S3095 faass Fsoas Fsaas = Vi ol
fin} {fas7> Figo» Fr1> Fooo> o

s}

{Foi1> Saas> Soa0s Sise {/f300} {fasa’ 31712: 31516’ 3{110} no
Sasos Srass> Ss32s Saso {/fin} {f365fs125 fss> oo} no
st /. 476 f431 > f 544 f399 s {fsss} {fsss > 31712 > 31516 s 3{:0 } no
Fsor> Jasz> Ssss> farao {faso} {fas0} no
f412’f520} {f544} {f544} no
{f3s6} {f 86> 372 > 356 ’ 3{410 } no
{fun} {fun} no
{far} {Furs} no
{fs20} {fs20} no

Table 5.7 Results for case study VI
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5.5.7 Case study VII

The test part shown in Figure 5.11 has been used by Nezis and Vosniakos (1997) to
validate their AFR method. In this study, the same part is employed for benchmarking
purposes. This test part is composed of eleven features that can be described

according to the type of interaction affecting them as follows:

0 No interaction. This is the case with one through slot {f ., fi3125f1359}> ONE
rectangular  protrusion  {f,0,,> f1036> S1049> Si00s> S1061 1> On€ non-through slot

{f1300> S1287> J12735 S1312 } » and two other features that are not present in the adopted

taxonomy. These latter two features can be identified as one passage

{f1675> S1688> S17015 Fin13» fres2 3 @nd one corner {f s, fi6235 Sreas } -

o Type I interaction. Such an interaction affects two through slots,

{f1206 s Jisrs i and { S50 Sros2> Friza ) and one non-through slot

{f;220 ’ .f1234 b4 f;247 > /;259} .

. . i I ) n I I :
o Type II interaction. The through slot {f s, fiss1> fisss> Siseo» fia12> S130s ) 1S altered

as a result of such an interaction.

o Type IV interaction. Such an interaction affects two rectangular pockets

w w
{fl‘lti;s s Jisa3s Srasas 111;1sf1492} and { /375, fi5315 S1s06> S151 Sis10 -

The results of the recognition process obtained in regard to these features are shown

in Table 5.8. A complete report of the results for this test part is given in Appendix D.
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Figure 5.11 The solid model for the case study VII (Nezis and Vosniakos, 1997)
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Feature . Feature
class Set of seeds detected Plant developed Plant modified validated
{./1234’ﬁ412 ’.f1273’f13009 {f14923 14759f14513 1543 > yes
JSi2205 Sr287 5 fi5435 Fraa7» {fiars > frasa> fisazs Frsars Sfras}
0 _re
Po_ Sra33> Fra75 Srast> fisos s Jisio frazs } {f;475!.ﬂ531’fi506!f;i§19 es
Jisio}
{fmz’flozz s J15935 Fro0s>
S1308s S117a5 Srssrs Jiasas {1036 > 10495 Fros1> Sroos >
€S
pr_re f;z753f9189f1359af10369 f“m} y
Juisas SFroae }
{f1569’ 1593’ 12112, 1gsxa
{f1s815 S1ss6> Fr308 3 f yes
{f1412af1022=f15933f10085 TR 1556’ 128
€s
Srsogs Fi7as Srssr» Fiasa s 134> 71082 7 875 y
St | fores forns Frasos Srosss | Simo Siss} yes
1 I I
} {f1569a 15935 J 14125 J 1581
Jie> o {f1s69> fis03> Frana } yes
1556’-12398
{17 9f1206’f1174} yes
{fmssfwss’f)znsfwss’ { fi155 S1m3> Fr701 Fress o
n
fi623’ﬁ636’f;3009./;70]> fiﬁﬁz}
sl_nt Siszs frnos Fuusas Fraar» {f1623> J16a8> J1636 ) no
Jissss Srerss Jross Jrsea {f287> Fi2735 J1300> Friana } yes
jg@} {fhu,/ﬁw’/bu’fﬁm} yes

Table 5.8 Results for case study VII
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It is important to note that nine of the eleven features in this part could be recognised.
For the features that were not recognised, the corner and the passage, plants were
constructed but failed to be validated because such feature classes were not defined in

the taxonomy used in this study.

5.5.8 Case study VIII

The test part used in this case study, shown in Figure 5.12, has also been used by
other researchers for validation purposes (Gupta et al., 1994; Regli, 1995). The STEP
file of this part was downloaded from the National Design Repository (2004).
However, some of the entity names used in this file are not supported by the STEP
parsers employed to process the data. These parsers were developed in compliance
with the STEP AP203 format. Thus, to avoid modifying the parsers, the part was

redesigned using Pro/Engineer™ and another version of this STEP file was generated.

This test part is composed of twelve features that can be described according to the

type of interaction affecting them as follows:

o No interaction. This is the case for two steps, { /9, /795 } and {fy;, fs07} > and two

through holes, {1, fes } and {f e85 fi100} -

o Type I interaction. Such an interaction exists between one step feature {1y, /540 }

and two non-through slots, {10195 foess Sos3> fra1} @0 {f10075 Soos> Fr2s5 S158 } -
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Figure 5.12 Two views of the solid model for case study VIII (Gupta et al., 1994;

Regli, 1995)
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o Type III interaction. The through slot {fh, fiss fr0s,} is affected by such an

interaction.

0 The interaction altering the through slot {fys,f;,} and three through holes

{fion}> {fiasy and {fee} cannot be classified into any of the six types

considered in this research. In particular, one of the faces of the through slot is
removed completely from the original feature structure and a smooth concave

edge is removed for each of these through holes.

The results concerning these features are shown in Table 5.9. In Appendix E, a
complete report of the feature recognition output is provided. The results for both
through and non-through slot feature classes were produced by using the definition of
a secondary feature hint. For six features present in this part, their corresponding face
sets could be retrieved and validated successfully. These features are the steps and the
through holes that do not interact and also the step and the through slot affected by
interaction types I and III respectively. For the other six features that were not
recognised, the plants for five of them were constructed successfully but they failed to
be validated as features. Only for one feature, the through slot with the missing face,
was its corresponding plant not retrieved at all. There are two main reasons for the

results obtained for the features that were not recognised:

0 A plant is not covered by the rule set. This is the case with both non-through slots

that have a cylindrical face in their feature structure. This can be easily addressed

by adding examples representing such features in the training set.
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Feature Set of seeds detected Plant developed Plant modified Fe? ture
class validated
{11105 Sr835 Sros2> ferso {fioas} no
Jrors froas > Faars> Forss fona {fe0s} no
ho_th Jeo15 Sors» Jro08> Ssr25 fass { /11002 fro0s } yes
f667’fsss’ﬁossaf910’f;9ss {fsszafsw} yes
Jioss} {fion} no
{f1835 S 141> Js015 S 25> Frosas {fion} {fxfgz 5 1{)1518 > .flgé3 yes
Jex1> 195 Jr0075 Foo3s Frss» {fi0s8 } {fro52> Sros8> Srogs yes
sl_th Jsars Jorss Sonss Sross fonas {fi083} {fro325 Srosss Sross yes
Jass> Fo61> Sssss Fross» Soro {fass} no
Josos Fosrs Frosss Froe> foss } {Foro} no
ol nt {/fi1105 fs075 Sr0075 Fos2 » {255 Sro07 > Sasws oos } no
N Sr9s5 Sro19> Fos3} {fos3> Srar> Frorss Joes} no
{fr83> fra15 Saors Jr2s5 fron» {Sosts Soro} yes
Jes1> Ja195 Jroor> Foos» Sasso
st Ssars Foig> Foass Sross Ssnas {fs07>Ss03} yes
Sssso Sss15 Sssss Srosss Joros
f9409f981’j;083’~f1019’f953} {f795’f819} yes

Table 5.9 Results for case study VIII

-134-




Chapter 5 Recognition of interacting features

o The faces affected by interactions are not identified. This is the case with three
through holes, each of which is altered by the loss a smooth concave edge. This
problem also arises for a through slot as one of its faces is removed completely.
To address this issue, it is necessary to extend the range of considered interaction
types. The proposed AFR system has an open architecture and easily could

accommodate additional cases of feature interactions.

5.6 Summary

This chapter has presented some solutions to extend the capabilities of the AFR
method introduced in Chapter 4. They overcome some of its limitations when it is
applied for recognising interacting features. The proposed solutions are the result of a
critical analysis of the method sub-processes when they are used for recognising
simple features that interact. In particular, the capability of these sub-processes to
perform adequately when different types of interactions are present has been assessed.
In addition, the proposed modifications to the AFR method have been implemented

and verified on eight case studies representing different types of interactions.

The contribution of this research lies in the development of a geometric reasoning
mechanism to tackle the recognition problems associated with interacting features by
applying the proposed AFR method. In particular, the faces in a plant that could be
affected by such interactions are detected and this triggers modifications in the plant
structure that lead to the formation of new face sets corresponding to potential simple
features. It is important to note that the solutions suggested in this chapter develop

further the main idea behind the proposed AFR method by combining the ‘learning
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from examples’ concept with the rule-based and hint-based feature recognition

approaches.

The reported results are restricted to recognising interactions between planar faces.
However, they prove the feasibility of the proposed approach and suggest that the
method could be extended to include other types of face geometry. These results also
show that the feature hints, defined by applying the method proposed in Chapter 4, are
suitable for detecting seeds that indicate the existence of simple features despite the
face alterations caused by possible interactions between them. Finally, the recognition
results obtained for both benchmarking parts are similar to those achieved by other
researchers. However, the proposed AFR method has some advantages over other
techniques. In particular, the method could be deployed in different application
domains and the knowledge base that determines the performance of the developed

AFR systems could be easily updated to broaden their application areas.
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6.1 Overview

This chapter discusses the main contributions of this research, presents the most

important conclusions and suggests directions for future work.

6.2 Contributions

Following the review of existing AFR approaches in Chapter 2, it was concluded that
the main knowledge gap that this research should address is the development of AFR
methods that are domain independent. In this context, this work is an original
contribution to the field of automatic feature recognition. A new AFR method that
could be applied in different application domains is proposed. In particular, to achieve

this, the following contributions are made to the current state-of-the-art in this field:

1. A method for automatic generation of feature recognition rules that is applicable
in different application domains is proposed. This is a new method for creating
knowledge bases of AFR systems that eliminates a major deficiency of rules-

based AFR techniques. The two most important characteristics of this method are:

o The application of inductive learning techniques for identification of hidden

patterns in sets of feature examples.
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o The utilisation of two representation schemes that code feature information at
different levels of abstraction to complement and extend the learning

capabilities of this method.

2. A hybrid AFR method that combines the ‘learning from examples’ concept with

the rule-based and hint-based AFR approaches is developed. In particular:

o A technique for defining feature hints automatically is proposed to address one
of the main deficiencies of hint-based approaches. This technique makes
possible the effective application of the hint concept in different application

domains.

o The feature recognition process is considered analogous to the growth of a
vegetal plant. A face set defining a feature is constructed in stages from a seed,
a face, representing a hint for the existence of this feature. This process
employs sequentially, a set of hints, two rule sets and a geometric reasoning
algorithm to construct valid features from the geometrical and topological

information stored in B-Rep part models.

3. A geometric reasoning mechanism is developed to extend the capabilities of the
proposed AFR method for recognising interacting features. It is a technique for
detecting faces in a potential feature that could be affected by interactions. Then,
depending on the type of the identified interactibn, a face set is modified or split

into more face sets that potentially could represent simple features.
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The capabilities of the proposed AFR method to recognise simple and interacting

machining features are verified. This is achieved by:

o Implementing the learning and feature recognition processes of this method into a

prototype system.

0 Defining a taxonomy of machining features and two schemes for coding
geometrical and topological information required to generate feature recognition

rules and hints.

o Testing the recognition performance of the developed prototype AFR system on

three benchmark parts.

6.3 Conclusions

The application of inductive learning techniques for AFR has several advantages:

o It elevates the knowledge acquisition issues associated with the development of
rule-based AFR systems. The application of the ‘learning from examples’ concept
provides a formal and automatic mechanism for rule definition and also assures

the consistency of the generated rule sets.

0 The development of AFR systems for different application domains requires only
representative training sets to be formed for each of them. This is a major
advantage of the proposed approach due to the domain-dependent nature of

features.
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@ Due to the generalisation capabilities of inductive learning techniques, AFR

systems could recognise features that are not present in the training sets.

o The knowledge base of such systems could be extended easily to cover new or

user-defined features.

In addition, the following conclusions are also drawn from this research:

0 The generation of rule sets at two levels of abstraction offers flexibility in
adopting different recognition strategies in AFR systems. The search for features

could be carried out by utilising data present in individual faces or face sets.

0 The creation of a rule set that represents patterns associated with individual
feature faces is particularly suitable for the application of the hint concept. This is
due to the fact that each hint derived from such rules represents only a hypothesis

for the existence of a feature in a part.

o The utilisation of the hint concept is initially suggested in this research to speed up
the exhaustive search for features that is carried out by rule-based AFR systems. It
could be argued that given the computing power available today, the application
of this concept does not bring an important advantage to the proposed AFR
method. However, such an argument is not valid any more when the problems
associated with the recognition of interacting features are considered. In
particular, the application of this concept is very important to detect the existence

of features that are altered as a result of feature interactions.
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0 Traditional rule-based AFR systems cannot handle feature interactions adequately
because it may be necessary to define rules for all possible types of feature
interactions. This research shows that by combining different AFR approaches
and, at the same time, by complementing them with geometric reasoning
mechanisms, rules can be successfully employed for recognising interacting

features.

6.4 Future work

The proposed AFR method was implemented only for a taxonomy of machining
features. More work is required to verify its recognition capabilities in other domains

such as layer-based manufacturing and injection moulding for example.

Together with the automatically generated rule sets and feature hints, the geometric
reasoning algorithms are an important component of the proposed AFR method. Thus,
to apply it successfully in different domains, it is required generic geometric
reasoning algorithms to be developed. The algorithm implemented in Chapter 4 can
be used to recognise generic features such as protrusions or depressions, however

further work is required to handle free-form surface features.

Finally, a comprehensive description of all possible types of feature interactions in a
given domain is required in order to apply the proposed method successfully for such
features. The different face alterations caused by feature interactions have to be
studied further in order to develop a geometric reasoning mechanism for identifying

the constituent simple features in solid models of parts.
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Appendix A - Structure of the STEP standard

This appendix provides a concise description of the structure of the STEP Standard
for the Exchange of Product Model Data. It is based on texts including (Owen, 1993),

(Pratt, 2001) and (Nell, 2004).

STEP, developed by ISO TC184/SC4, is the familiar name for ISO 10303. It is an
international effort towards the definition of a standard for describing product data
throughout the life cycle of a product that is independent of any particular computer
system. An interesting characteristic of STEP is that it provides not only a
representation of product-related information but also the mechanisms and definitions
to enable product data exchange and sharing. Its development started in 1984 when
the need for producing a single international standard was recognised due to the

identification of deficiencies in the existing product data standards.

Early efforts have led to the division of the standard into a number of classes of parts.
Each part in the different classes has its own status, which can vary from the ISO
preliminary stage status to the acceptance as an international standard. The different

parts of STEP fall into one of the following classes:
o Description methods (Part 1-14). This class provides the standardised methods to

describe the STEP entities. The part 11 is the EXPRESS language reference

manual, which describes the data-modelling language that is employed in STEP.
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0 Implementation methods (Parts 21-29). The parts in this class support the
development of software implementation of the standard. This class contains the
part 21 (Clear fext encoding of the exchange structure), that specifies how
physical files should be written. The syntax of a physical file is formally defined
and it has a specified alphabet and tokens, which enable it to be parsed. Part 21
also contains a formal mapping from EXPRESS to the file structure, which

dictates how an instance of any EXPRESS schema will appear in a physical file.

o Conformance testing methodology and framework (Parts 31-35). The parts in this
class specify the standard procedures and tools required in testing an

implementation of ISO 10303 for conformance to the standard.

0 Integrated generic resources (Parts 41-58). This class provides information models
of general applicability that are used to build the application protocols (see Parts

201-240).

o Integrated application resources (Parts 101-110). The resources described in this
class are slightly more specialised than the integrated generic resources. They can

support a single application or a range of similar applications.

o Application i)rotocols (APs) (Parts 201-240). This class specifies the information
needs in specific engineering applications. APs give context and constraints to the
information resources to represent a particular data model of some stages of a
product life. The application protocol AP 203 (Configuration-controlled design)

used in this research is concerned with the transfer of product shape models,
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assembly structure and configuration control information (e.g. part versioning,

etc.).

O Abstract test suites (Parts 301-336). Each application protocol has an associated
abstract test suite, which consists of test data and criteria to be used in assessing

the conformance of a software implementation of an AP.

o Application interpreted constructs (AICs) (Parts 501-523). AICs are built from the
integrated resources. They are reusable groups of information that are common in

several APs.

o Application modules (Parts 1001-1414). Application modules have the same

functionality as AICs. They are also designed to standardise the interpretation of

the integrated resources but they extend the capabilities of the AICs.
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This appendix shows the STEP AP 203 file of one of the blind hole feature models
used in Chapter 3. The file starts with the keyword ISO-10303-21 and is divided into

a HEADER and a DATA section as follows:

ISO-10303-21;
HEADER;

FILE_DESCRIPTION(("),2;1";

FILE NAME(HO_BL1','2003-06-24T",('sceeb"),("),
'PRO/ENGINEER BY PARAMETRIC TECHNOLOGY CORPORATION, 2001150",
'PRO/ENGINEER BY PARAMETRIC TECHNOLOGY CORPORATION,
2001150',");
FILE_SCHEMA(('CONFIG_CONTROL_DESIGN");
ENDSEC;

DATA;

#1=DIRECTION(",(1.E0,0.E0,0.E0));
#2=VECTOR("#1,5.E1);
#3=CARTESIAN_POINT(",(0.E0,0.E0,0.E0));
#4=LINE(" #3,42);
#5=DIRECTION(",(0.E0,0.E0,-1.E0));
#6=VECTOR(",#5,5.E1);

#7=CARTESIAN POINT(",(5.E1,0.E0,0.E0));
#8=LINE("#7,#6);
#9=DIRECTION(",(-1.E0,0.E0,0.E0));
#10=VECTOR(",#9,5.E1);

#11=CARTESIAN POINT(",(5.E1,0.E0,-5.E1));
#12=LINE("#11,410);
#13=DIRECTION(",(0.E0,0.E0,1.E0));
#14=VECTOR(",#13,5.E1);
#15=CARTESIAN_POINT(",(0.E0,0.E0,-5.E1));
#16=LINE("#15,414);
#17=DIRECTION(",(0.E0,1.E0,0.E0));
#18=VECTOR(",#17,5.E1);

#19=CARTESIAN POINT(",(0.E0,0.E0,0.E0));
#20=LINE(" #19,#18);
#21=DIRECTION(",(0.E0,1.E0,0.E0));
#22=VECTOR("#21,5.E1);

#23=CARTESIAN POINT(",(0.E0,0.E0,-5.E1));
#24=LINE(",#23,#22);
#25=DIRECTION(",(0.E0,1.E0,0.E0));
#26=VECTOR(",#25,5.E1);

#27=CARTESIAN POINT(",(5.E1,0.E0,-5.E1));
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#28=LINE(" #27,426);
#29=DIRECTION(",(0.E0,1.E0,0.E0));
#30=VECTOR(",#29,5.E1);
#31=CARTESIAN_POINT(",(5.E1,0.E0,0.E0));
#32=LINE(",#31,#30);
#33=DIRECTION(",(1.E0,0.E0,0.E0));
#34=VECTOR(",#33,5.E1);

#35=CARTESIAN POINT(",(0.E0,5.E1,0.E0));
#36=LINE(",#35,#34);
#37=DIRECTION(",(0.E0,0.E0,1.E0));
#38=VECTOR(",#37,5.E1);

#39=CARTESIAN POINT(",(0.E0,5.E1,-5.E1));
#40=LINE(" #39,438);
#41=DIRECTION(",(-1.E0,0.E0,0.E0));
#42=VECTOR(",#41,5.E1);
#43=CARTESIAN_POINT(",(5.E1,5.E1,-5.E1));
#44=LINE(" #43,442);
#45=DIRECTION(",(0.E0,0.E0,-1.E0));
#46=VECTOR(",#45,5.E1);

#47=CARTESIAN POINT(",(5.E1,5.E1,0.E0));
#48=LINE(" #47 #46);

#49=CARTESIAN POINT(",(2.5E1,5.E1,-2.5E1));
#50=DIRECTION(",(0.E0,-1.E0,0.E0));
4#51=DIRECTION(",(1.E0,0.E0,0.E0));
#52=AXIS2_PLACEMENT 3D(",#49,#50,#51);
#54=CARTESIAN_POINT(",(2.5E1,5.E1,-2.5E1));
#55=DIRECTION(",(0.E0,-1.E0,0.E0));
#56=DIRECTION(",(-1.E0,0.E0,0.E0));
#57=AXIS2_ PLACEMENT 3D(",#54,#55#56);
#59=DIRECTION(",(0.E0,-1.E0,0.E0));
#60=VECTOR(" #59,3.E1);
#61=CARTESIAN_POINT(",(4.E1,5.E1,-2.5E1));
#62=LINE(" #61,460);
#63=DIRECTION(",(0.E0,-1.E0,0.E0));
#64=VECTOR(" #63,3.E1);

#65=CARTESIAN POINT(",(1.E1,5.E1,-2.5E1));
#66=LINE(",#65,464);

#67=CARTESIAN POINT(",(2.5E1,2.E1,-2.5E1));
#68=DIRECTION(",(0.E0,-1.E0,0.E0));
#69=DIRECTION(",(1.E0,0.E0,0.E0));
#70=AXIS2_PLACEMENT 3D(" #67,#68,#69);
#72=CARTESIAN POINT(",(2.5E1,2.E1,-2.5E1));
#73=DIRECTION(",(0.E0,-1.E0,0.E0));
#74=DIRECTION(",(-1.E0,0.E0,0.E0));
#75=AXIS2_PLACEMENT 3D("#72#73,#74);
#77=CARTESIAN_POINT(",(0.E0,0.E0,0.E0));
#78=CARTESIAN_POINT(",(5.E1,0.E0,0.E0));
#79=VERTEX_POINT("#77);
#80=VERTEX_POINT(",#78);
#81=CARTESIAN POINT(",(5.E1,0.E0,-5.E1));

- 146 -



Appendix B An example of a STEP physical file

#82=VERTEX_POINT(",#81);
#83=CARTESIAN_POINT(",(0.E0,0.E0,-5.E1));
#84=VERTEX_POINT(" #83);
#85=CARTESIAN_POINT(",(0.E0,5.E1,0.E0));
#86=CARTESIAN_POINT(",(5.E1,5.E1,0.E0)):
#87=VERTEX_POINT(" #85);
#88=VERTEX_POINT(" #86);
#89=CARTESIAN_POINT(",(5.E1,5.E1,-5.E1));
#90=VERTEX_POINT(" #89);
#91=CARTESIAN_POINT(",(0.E0,5.E1,-5.E1));
#92=VERTEX_POINT("#91);
#93=CARTESIAN POINT(",(4.E1,2.E1,-2.5E1));
#94=CARTESIAN_POINT(",(1.E1,2.E1,-2.5E1));
#95=VERTEX_POINT(",4#93);
#96=VERTEX_POINT(",#94);
#97=CARTESIAN POINT(",(4.E1,5.E1,-2.5E1));
#98=CARTESIAN POINT(",(1.E1,5.E1,-2.5E1));
#99=VERTEX_POINT(".#97);
#100=VERTEX_POINT(",4#98);
#101=CARTESIAN_POINT(",(0.E0,0.E0,0.E0));
#102=DIRECTION(",(0.E0,1.E0,0.E0));
#103=DIRECTION(",(1.E0,0.E0,0.E0));
#104=AXIS2_ PLACEMENT 3D(",#101,#102,#103);
#105=PLANE(",#104);

#107=ORIENTED EDGE(",*,*,#106,.T.);
#109=ORIENTED EDGE(",* *,#108,.T.);
#111=ORIENTED_EDGE(",*,* #110,.T.);
#113=ORIENTED EDGE(",*,* #112,.T.);
#114=EDGE_LOOP(",(#107,#109,#111,#113));
#115=FACE_OUTER_BOUND(",#114,.F.);
#116=ADVANCED_FACE(",(#115),#105,.F.);
#117=CARTESIAN_POINT(",(0.E0,0.E0,0.E0));
#118=DIRECTION(",(0.E0,0.E0,1.E0));
#119=DIRECTION(",(1.E0,0.E0,0.E0));
#120=AXIS2_PLACEMENT 3D("#117,#118,#119);
#121=PLANE(",#120);
#122=ORIENTED_EDGE(",*,* #106,.F.);
#124=ORIENTED_EDGE(",*,* #123,.T.);
#126=ORIENTED EDGE(",*,* #125,.T.);
#128=ORIENTED EDGE(",*,*,#127,.F.);
#129=EDGE_LOOP(",(#122,#124,#126,#128));
#130=FACE_OUTER_BOUND(",#129,.F.);
#131=ADVANCED_FACE(",(#130),#121,.T.);
#132=CARTESIAN_POINT(",(0.E0,0.E0,-5.E1));
#133=DIRECTION(",(-1.E0,0.E0,0.E0));
#134=DIRECTION(",(0.E0,0.E0,1.E0));
#135=AXIS2_PLACEMENT 3D("#132,#133,#134);
#136=PLANE(",#135);
#137=ORIENTED_EDGE(",*,* #112,F.);
#139=ORIENTED_EDGE(",*,* #138,.T.);
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#141=ORIENTED_ EDGE(",*,*#140, T.);
#142=ORIENTED_EDGE(",* * #123,F.);
#143=EDGE_LOOP(",(#137,#139,#141,#142));
#144=FACE_OUTER_BOUND(",#143, F.);
#145=ADVANCED FACE(",(#144),#136,.T.);
#146=CARTESIAN POINT(",(5.E1,0.E0,-5.E1));
#147=DIRECTION(",(0.E0,0.E0,-1.E0)):;
#148=DIRECTION(",(-1.E0,0.E0,0.E0));
#149=AXIS2_PLACEMENT 3D("#146,#147#148);
#150=PLANE(",#149);
#151=ORIENTED_EDGE(",*,* #110,.F.);
#153=ORIENTED_EDGE(",* * #152,.T.);
#155=ORIENTED_EDGE(",* * #154,.T.);
#156=ORIENTED_EDGE(",*,* #138,.F.);
#157=EDGE_LOOP(",(#151,#153,#155#156));
#158=FACE_OUTER_BOUND("#157,.F.);
#159=ADVANCED_FACE(",(#158),#150,.T.);
#160=CARTESIAN_POINT(",(5.E1,0.E0,0.E0));
#161=DIRECTION("(1.E0,0.E0,0.E0));
#162=DIRECTION(",(0.E0,0.E0,-1.E0));
#163=AXIS2_PLACEMENT 3D("#160,#161,#162);
#164=PLANE(",#163);
#165=ORIENTED_EDGE(",* * #108,.F.);
#166=ORIENTED EDGE(",*,* #127,.T.);
#168=ORIENTED_EDGE(",*,*,#167,.T.);
#169=ORIENTED EDGE(",*,* #152,.F.);
#170=EDGE_LOOP(",(#165,#166,#168,#169));
#171=FACE_OUTER_BOUND(",#170,.F.);
#172=ADVANCED_FACE(",(#171),#164,.T.);
#173=CARTESIAN POINT(",(0.E0,5.E1,0.E0));
#174=DIRECTION(",(0.E0,1.E0,0.E0));
#175=DIRECTION(",(1.E0,0.E0,0.E0));
#176=AXIS2_PLACEMENT 3D("#173,#174,#175);
#177=PLANE(",#176);
#178=ORIENTED_EDGE(",* * #125, F.);
#179=ORIENTED_EDGE(",*,* #140,.F.);
#180=ORIENTED_EDGE(",*,* #154,.F.);
#181=ORIENTED_EDGE(",*,* #167,.F.);
#182=EDGE_LOOP(",(#178,#179,#180,#181));
#183=FACE_OUTER_BOUND(",#182,.F.);
#185=ORIENTED EDGE(",*,*,#184,.F.);
#187=ORIENTED_EDGE(",*,*,#186,.F.);
#188=EDGE_LOOP(",(#185,#187));
#189=FACE_BOUND(",#188,.F.);
#190=ADVANCED_FACE(",(#183,#189),#177,.T.);
#191=CARTESIAN_POINT(",(2.5E1,5.E1,-2.5E1));
#192=DIRECTION(",(0.E0,-1.E0,0.E0));
#193=DIRECTION(",(1.E0,0.E0,0.E0));
#194=AXIS2 PLACEMENT 3D("#191,#192#193);
#195=CYLINDRICAL SURFACE(",#194,1.5E1);
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#196=ORIENTED_EDGE(",*,* #184,.T.);

#198=ORIENTED_EDGE(",*,* #197,.T.);
#200=ORIENTED_EDGE(",*,*#199,.F.);

#202=ORIENTED_EDGE(",*,* #201,.F.);
#203=EDGE_LOOP(",(#196,#198,#200,#202));
#204=FACE_OUTER_BOUND(",#203,.F.);
#205=ADVANCED_FACE(",(#204),#195,.F.);
#206=CARTESIAN_POINT(",(2.5E1,5.E1,-2.5E1));
#207=DIRECTION(",(0.E0,-1.E0,0.E0));

#208=DIRECTION(",(1.E0,0.E0,0.E0));

#209=AXIS2 PLACEMENT 3D(",#206,#207,#208);
#210=CYLINDRICAL_SURFACE(",#209,1.5E1);

#211=ORIENTED_EDGE(",*,* #186,.T.);
#212=ORIENTED_EDGE(",*,*,#201,.T.);

#214=ORIENTED_EDGE(",*,* #213,.F.),

#215=ORIENTED_EDGE(",*,* #197,.F.);
#216=EDGE_LOOP(",(#211,#212,#214,#215));
#217=FACE_OUTER_BOUND(",#216,.F.);
#218=ADVANCED_FACE(",(#217),#210,.F.);

#219=CARTESIAN POINT(",(2.5E1,2.E1,-2.5E1));
#220=DIRECTION(",(0.E0,-1.E0,0.E0));

#221=DIRECTION(",(1.E0,0.E0,0.E0));

#222=AXIS2_PLACEMENT 3D(",#219,#220,#221);

#223=PLANE(",#222);

#224=0ORIENTED_EDGE(",*,*,#199,.T.);
#225=ORIENTED_EDGE(",*,*,#213,.T.);

#226=EDGE_LOOP(",(#224,#225));

#227=FACE_OUTER_BOUND(",#226,.F.);
#228=ADVANCED_FACE(",(#227),#223,.F.);
#229=CLOSED_SHELL(",(#116,#131,#145,#159,#172,#190,#205,#218,#228));
#230=MANIFOLD_SOLID BREP(",#229),

#231=DIMENSIONAL_ EXPONENTS(1.E0,0.E0,0.E0,0.E0,0.E0,0.E0,0.E0);
#232=(LENGTH_UNIT(ONAMED_ UNIT(*)SI_UNIT(.MILLI.,. METRE)));
#233=LENGTH_MEASURE_ WITH_UNIT(LENGTH_ MEASURE(2 54E1),#232);
#234=(CONVERSION_BASED_UNIT(INCH'#233)LENGTH_UNIT()NAMED U
NIT(#231));
#235=DIMENSIONAL_EXPONENTS(0.E0,0.E0,0.E0,0.E0,0.E0,0.E0,0.E0);
#236=(NAMED_UNIT(*)PLANE_ANGLE_UNIT()SI_UNIT(S,.RADIAN.));
#237=PLANE_ANGLE _MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(1
.745329251994E-2),#236);

#238=(CONVERSION BASED_UNIT('DEGREE'#237)NAMED_UNIT(#235)PLA
NE_ANGLE_UNIT());
#239=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT());
#240=UNCERTAINTY MEASURE_WITH_UNIT(LENGTH_MEASURE(8.65990
7627683E-3),#234,

'closure’,

'Maximum model space distance between geometrlc entities at asserted
connectivities');
#241=(GEOMETRIC_REPRESENTATION_CONTEXT(3)GLOBAL_UNCERTAIN
TY ASSIGNED CONTEXT((
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#240))GLOBAL_UNIT_ASSIGNED_ CONTEXT((#234,#238,#239))REPRESENTA
TION_CONTEXT

('ID1','3");

#243=APPLICATION_CONTEXT(

'CONFIGURATION CONTROLLED 3D DESIGNS OF MECHANICAL PARTS
AND ASSEMBLIES");
#244=APPLICATION_PROTOCOL_DEFINITION('international standard',
'config_control design',1994,#243);

#245=DESIGN_CONTEXT(",#243,'design");
#246=MECHANICAL_CONTEXT(",#243,'mechanical');
#247=PRODUCT('HO_BL1''HO_BL1'/NOT SPECIFIED',(#246));
#248=PRODUCT_DEFINITION_FORMATION_ WITH_SPECIFIED SOURCE('1",
LAST VERSION'#247,

.MADE));

#252=PRODUCT_CATEGORY('part',");

#253=PRODUCT_RELATED PRODUCT CATEGORY('detail,",(#247));
#254—PRODUCT CATEGORY_RELATIONSHIP(",",#252,#253);
#255=SECURITY_CLASSIFICATION_ LEVEL('unclassified');
#256=SECURITY_CLASSIFICATION(",",#255);
#257=CC_DESIGN_SECURITY_CLASSIFICATION(#256,(#248));
#258=APPROVAL_STATUS('approved');

#259=APPROV AL(#258.,");
#260=CC_DESIGN_APPROVAL(#259,(#256,#248,#249));

#261=CALENDAR DATE(103,24,6);
#262=COORDINATED_UNIVERSAL TIME_ OFFSET(2,0,,AHEAD.);
#263=LOCAL_TIME(18,34,2.8E1,#262);

#264=DATE_AND_ TIME(#261,#263);

#265=APPROVAL DATE_TIME(#264,#259);

#266=DATE_TIME_ ROLE('creation_date');
#267=CC_DESIGN_DATE_AND TIME_ ASSIGNMENT(#264,#266,(#249));
#268=DATE_TIME_ ROLE('classification_date');
#269=CC_DESIGN_DATE_AND_ TIME_ASSIGNMENT (#264,#268,(#256));
#270=PERSON('UNSPECIFIED','UNSPECIFIED'$,$,$,5);
#271=ORGANIZATION('UNSPECIFIED',/UNSPECIFIED','UNSPECIFIED");
#272=PERSON_AND_ORGANIZATION(#270,#271);
#273=APPROVAL_ROLE('approver');

#274=APPROVAL_ PERSON_ORGANIZATION(#272,#259,#273);
#275=PERSON_AND_ORGANIZATION_ROLE('creator');
#276=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT#272,#27
5,(#248,#249));
#277=PERSON_AND_ORGANIZATION_ROLE('design_supplier');
#278=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT#272,#27
7,(#248

#2(79 P)E)ZRSON AND ORGANIZATION_ROLE('classification_officer");
#280=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT #272,#27
9,(#256));

#281=PERSON_AND_ORGANIZATION ROLE('de51gn owner");
#282—CC__DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT(#272,#28
1,(#247));

#53=CIRCLE(",#52,1.5E1);
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#58=CIRCLE(",#57,1.5E1);

#71=CIRCLE(".#70,1.5E1);

#76=CIRCLE(",#75,1.5E1);
#106=EDGE_CURVE(",#79,#80,#4,.T.);
#108=EDGE_CURVE(",#80,482,48,.T.);
#110=EDGE_CURVE(",#82,#84,#12,.T.);
#112=EDGE_CURVE(",#84,#79,#16,.T.);
#123=EDGE_CURVE(",#79,#87,#20,.T.);
#125=EDGE_CURVE(",#87,#88,436,.T.);
#127=EDGE_CURVE(" #80,4#88 #32,.T.);
#138=EDGE_CURVE(",#84,#92 #24, T.);
#140=EDGE_CURVE(",#92,487,#40,.T.);
#152=EDGE_CURVE(",#82,#90,#28,.T.);
#154=EDGE_CURVE(" #90,492,#44,.T.);
#167=EDGE_CURVE(",#88,#90,448,.T.);
#184=EDGE_CURVE(",#99,#100,#53,.T.);
#186=EDGE_CURVE(",#100,#99,#58,.T.);
#197=EDGE_CURVE(".#100,496,#66,.T.);
#199=EDGE_CURVE(",#95,496,4#71,.T.);
#201=EDGE_CURVE(",#99,#95 #62,.T.);
#213=EDGE_CURVE(",#96,#95,#76,.T.);
#242=ADVANCED BREP SHAPE_REPRESENTATION(",(#230),#241);
#249=PRODUCT_DEFINITION('design',",#248,#245);
#250=PRODUCT_DEFINITION_SHAPE(",'SHAPE FOR HO_BL1.,#249);
#251=SHAPE_DEFINITION_REPRESENTATION(#250,#242);
ENDSEC;

END-ISO-10303-21;
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This appendix shows one of the grammar files developed in this research. Such a file
is processed by JavacCC™ to generate a Java™ program that can parse a STEP
physical file. In this example, Java™ code was developed for the purpose of
extracting information about the entities ADVANCED_FACE within a STEP file (see

Appendix B).

/*******************************************************************
*

* contents: STEP Part 21 - clear text encoding parser to be used with JavaCC

18 Aug 1999: Creation. Singva Ma <Singva.Ma@leg.ensieg.inpg.fr>.

20 Jan 2004: Addition of Java™ code to extract information about the STEP
entities ADVANCED_FACE. Emmanuel Brousseau<BrousseauE@cf.ac.uk>

* ¥ K ¥ ¥

******************************************************************/

options {
LOOKAHEAD = 3;
STATIC = true;
DEBUG_PARSER = false;

}
PARSER BEGIN(AdvancedFaceParser)

package stepFileParsing.advancedFaceParser;
import java.io.*;
import java.util. *;
import topology.*;
import utilities.*;
public class AdvancedFaceParser{
private static boolean foundAdvancedFace = false;

private static boolean listFaceBound = false;
private static AdvancedFace advancedFace;
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private static SolidModel sm;
private static Token tag;
private static Map afMap = new HashMap();

}
PARSER_END(AdvancedFaceParser)

[ Rk ks s ok ok ok ok ok Rk ks o Rk ok ks ok sk sk sk ok skl kol ok ok sk
sk ke ok ok ok ok ok ok 3k sk ok o o sk ok sk sk ok ke e sk ok ok e e sk sk o ok ke ok ke o e o s sk o o ok ok ok ok ok ok ok ok ok ok
** Tokens

ok ok ok ok 3k 3k ok ok ok ok ok ok ok ok ok ok ok sk 3k ok ok ok sk ok ke ok ok sk sk ok ok ke ke ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok
ok ok sk ok Rk Rk sk sk ok sk kR ok kR R ok ok ok kR ok /

SKIP : /* WHITE SPACE */
{

nn

| "\t"
| "\nll
| "\rﬂ
| "\f'
}

SPECIAL_TOKEN : /* COMMENTS */

{
<EMBEDDED—REMARK: H/*“ (N["*"])* okt (H*" | (N[H*"’ll)"] (~[l|*"])* H*"))* l|/">
}

TOKEN :
{
<LPAREN: "(" >
| <RPAREN: ")" >
| <LBRACE: "{" >
| <RBRACE: "}" >
| <LBRACKET: "[" >
| <RBRACKET: "]" >
| < SEMICOLON: ";" >
| <COLON: ":" >
| <COMMA: "," >
| <DOT:"." >
| <EQ:"=">
| <DOLLAR: "$" >
| <STAR: "*">
| <SLASH: "/">

}

TOKEN : {
<INTEGER: (<SIGN>)? <DIGIT> (<DIGIT>)*>
| <KEYWORD: <USER_DEFINED_KEYWORD> | <STANDARD_KEY WORD>>
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| <USER_DEFINED_KEYWORD: "!" <UPPER> (<UPPER> | <DIGIT>)*>

| <STANDARD KEYWORD: <UPPER> (<UPPER> | <DIGIT>)*>

| <#SIGN: ["+","-"]>

| <REAL: (<SIGN>)? <DIGIT> (<DIGIT>)* <DOT> (<DIGIT>)* ("E" (<SIGN>)?
<DIGIT> (<DIGIT>)* )?>

| <NON_Q_CHAR: <SPECIAL> | <DIGIT> | " " | <LOWER> | <UPPER>>

| <STRING: "" (<NON_Q_CHAR> | <APOSTROPHE><APOSTROPHE> |
<REVERSE_SOLIDUS><REVERSE_SOLIDUS> | <CONTROL_DIRECTIVE>)*
"

| <ENTITY_INSTANCE_NAME: "#" <DIGIT> (<DIGIT>)*>

| <ENUMERATION: <DOT> <UPPER> (<UPPER> | <DIGIT>)* <DOT>>

| <#HEX: ["0"-"9", "A"-"F"]>

| <BINARY: "\"" ("0" | "1" ] "2" | "3" ) (RHEX>)* "\"">

}

TOKEN : {
<#DIGIT: ["0"-"9"]>

| <YLOWER: ["a"-"z"]>

| <#UPPER: ["AH_HZH’ "_"]>

| <SPECIAL: "!" | "\"" | <STAR> | <DOLLAR> | "%" | "&" | <DOT> | "#" | "+" |

<COMMA> | "-" | <LPAREN> | <RPAREN> | "?" | <SLASH> | <COLON> |

<SEMICOLON> | "<" | <EQ> | ">" | "@" | <LBRACKET> | <RBRACKET> |

<LBRACE> | "|" | <RBRACE> | "A" | ">

| <REVERSE_SOLIDUS: "\">

| <APOSTROPHE: "">

| <CHARACTER: " " | <DIGIT> | <LOWER> | <UPPER> | <SPECIAL> |

<REVERSE_SOLIDUS> | <APOSTROPHE>>

}

TOKEN : {
<CONTROL_DIRECTIVE: <PAGE> | <ALPHABET> | <EXTENDED2> |

<EXTENDED4> | <ARBITRARY> >

| <PAGE: <REVERSE_SOLIDUS> "S" <REVERSE_SOLIDUS>

<CHARACTER>>

| <ALPHABET: <REVERSE_SOLIDUS> "P" <UPPER> <REVERSE_SOLIDUS>>

| <EXTENDED2: <REVERSE_SOLIDUS> "X2" <REVERSE_SOLIDUS>

<HEX_TWO> (<HEX_TWO>)* <END_EXTENDED>>

| <EXTENDED4: <REVERSE_SOLIDUS> "X4" <REVERSE_SOLIDUS>

<HEX_FOUR> (<HEX_FOUR>)* <END_EXTENDED>>

| <END EXTENDED: <REVERSE_SOLIDUS> "X0" <REVERSE_SOLIDUS>>

| <ARBITRARY: <REVERSE_SOLIDUS> "X" <REVERSE_SOLIDUS>

<HEX_ONE>>

| <HEX_ONE: <HEX> <HEX>>

| <HEX_TWO: <HEX_ONE> <HEX_ONE>>

| <HEX_FOUR: <HEX_TWO> <HEX_TWO>>

}
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/% % o 3 2k ke sk ok o sk o 3 ke sk ok ok ok ok s sk ok ke ok sk ok ok ke ok ok 3k ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke

* Grammar
***********************************************/

void exchange _file() : {}

"ISO-10303-21;"
header section()
data_section()
"END-ISO-10303-21"

void header_section() : {}
{
"HEADER;"
header_entity() header_entity() header_entity()
[header_entity list()]
"ENDSEC;"

void header_entity list() : {}

header entity() (header_entity())*
}

void header_entity() : {}
{
<KEYWORD>
<LPAREN>
[parameter_list()]
<RPAREN>
<SEMICOLON>

}

void parameter_list() : {}

parameter() (SCOMMA> parameter())*
}

void parameter() : {}

{
typed parameter()
| untyped_parameter()
| omitted_parameter()
}
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void typed_parameter() : {}
{

<KEYWORD> <LPAREN> parameter() <RPAREN>
}

void untyped_parameter() : { Token x = null; int i = 0; }

{
<DOLLAR>

| <INTEGER>

| <REAL>

| <STRING>

| x=<ENTITY_INSTANCE NAME>

{ if (foundAdvancedFace == true && listFaceBound == true) {

/*
*The first reference stored in this advancedFace object will be to a
*FACE_OUTER_BOUND
*The next reference, if present, will be to one or more FACE_ BOUND

*entity
*/
advancedFace.setFaceBoundRef(x.image);
}
/ *

*If the next condition is true, it means that the parser is reading the reference

*which points towards the geometry information for the ADVANCED FACE

*considered.

*/

if (foundAdvancedFace == true && listFaceBound == false) {
advancedFace.setSurfaceRef(x.image);

}

}
| x=<ENUMERATION>

{ if (foundAdvancedFace == true) {
/*
*Here we get the information about the flag of the
*ADVANCED_FACE entity.
* x.image returns ".T." or ".F."
*/
advancedFace.setSameSense((x.image).substring(1,2));

}

}
| <BINARY>

| list()
}

void omitted parameter() : {}

{
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<STAR>
}

void list() : {}

{
<LPAREN> parameter() (KCOMMA> parameter())* <RPAREN>
{ listFaceBound = false; } '

void data_section() : {}

{
"DATA;" entity instance list() "ENDSEC;"

}

void entity instance list() : {}
{

entity instance() (entity_instance())*

}

void entity instance() : {}

{

simple_entity instance() | complex entity instance()

}

void simple_entity instance() : {}
{

tag=<ENTITY INSTANCE NAME> <EQ> [scope()] simple_record()
<SEMICOLON>

}

void complex_entity_instance() :

{
Token t;
}

{
<ENTITY_INSTANCE_NAME> <EQ> [scope()] subsuper_record()

<SEMICOLON>
}

void scope() : {}

{
"&SCOPE" entity_instance_list() "ENDSCOPE" [export_list()]
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void export_list() : {}

<SLASH> <ENTITY_INSTANCE_NAME> (<COMMA>
<ENTITY_INSTANCE NAME>)* <SLASH>

}

void simple_record() : { Token x; }
{

x = <KEYWORD>

{ if (x.image.equals("ADVANCED_FACE")) {
foundAdvancedFace = true;
advancedFace = new AdvancedFace(sm);
advancedFace.setTag(tag.image);
afMap.put(tag.image, advancedFace);
listFaceBound = true;

}

}

{ if (x.image.equals("FACE_SURFACE")) {
foundAdvancedFace = true;
advancedFace = new AdvancedFace(sm);
advancedFace.setTag(tag.image);
afMap.put(tag.image, advancedFace);
listFaceBound = true;

}
}
<LPAREN> [ parameter_list() ] <RPAREN>
{
/*
*The parser has reached the end of the line, we have to set the
*boolean attribute found AdvancedFace to false.
*/
found AdvancedFace = false;
}
}
void subsuper_record() : {}
{
<LPAREN> simple_record_list() <RPAREN>
}

void simple_record_list() : {}

{
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simple_record() (simple_record())*

}

Map parseAdvancedFace(SolidModel solidModel) : {}
{

{
sm = solidModel;
afMap.clear();

}

exchange_file()

{
return afMap;

}

}
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This appendix is composed of three tables that show the results of the recognition

process carried out on the part used for case study VII in Chapter 5.

Feature Set of seeds detected Plant developed Plant modified Fe.a ture
class validated
{f1234 > f1259 > f1247 > fmo} no
{flss9 > 1593 > 1{1112 > 115181 ’
{f1569 s J1s93 ’-f14]2} no
{f1234,f1412=f1273’f1300a 1556’f139s
f1220’f1237’f1543’f1247’ {f14929 1475 sfl451’f1543a
po_re f f } {f14759f;492 >f;543 ’fi531s yes
- 14332 J 1475 Sz}
fi451’fi506’.f1519>.f1433} —
{fms :fl531 ,flsos > J1451> yes
Jisio}
{f1287 s f1273 sflsoo afmz} no
po_ob {9}
ho_bl {0}
{fwzs s Jro495 905 » Jro0s 5
{fois} no
918 > fxozz ) 993}
{fse0} {fsso , f 836 no
{fes6} {fsso s 836 no
{/1346 Ss60> S336> Sr1e1> Ui no
ho_th | fiss5 fooss Soiss Sriz2» {f1036> Sroa9 fo0s froos
- {fo0s } no
flso9 > floel } 913>f1022 ’f993
{flom } no
{fiin} no
{f1325} {f1346 > f1325 no
{f1346} {f1346 > f1325 no
pr_ci {9}

Table D.1 Results for the feature classes po_re, po_ob, ho_bl, ho_th and pr_ci
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Results for case study VII in Chapter 5

Fecil;:sre Set of seeds detected Plant developed Plant modified VI‘;;?:; ed
{/ 10125 022> Sr593> Sro0s>
Sizoss Fonas Fissis Srasas | {0365 froas> Frosts Frooss
Pr_Ye | forss forss Sisso> fiosss | fion) yes
Jizas Sfroas }
u pu gl
isars Frssss fFrang) {fr5695 Srs93s Franzs Srss yes
fisses Sraos
{ /11305 Sros25 fwrs } yes
Uisins frozas Frsoss frooss {f1036> 1049 fr0085 Sro225 {f1036’f1049’floossflozzs o
Jisoss Fr17as Srssrs Sissa Joss} o032 fous o
sLth | £ 0. forss Fi3ses Frosss o) {10365 Sioa9> S0 Sroos» o
Jir3as fross } ovss Jio225. Soms
{13845 fi372> Fiss0} yes
TRy
ossos fosons frais) {fr569> fr503> Jrar» Sissrs yes
556> 1398
{ /187> o065 fr17ad yes
issos Fosons Fuara) {fr5695 Sr5935 Sianzs Srssrs 10
o
{fi6155 Frnzs Sraors Fresss o
{fin35 Sress> Friaz» Sisse fica}
Sis23s fr6365 S13005 Frro15 Ui Srouns i} no
sl nt Jisn2s frnnos Jusr> Fraars Unisr> Fiaoes S} no
- Srsass fierss Jrosas Jrseas Uises Sross frs ) . _ no
Siseo} rosis Fossso foona} { fr4695 15935 Fianzs Fisss o
556> 1308
{f13845 S1372> fi3so } no
{f12875 S1213> Frsoos Jisiz } yes
{f1234’f1259’f1247,f1220} yes

Table D.2 Results for the feature classes pr_re, sl_th and sl_nt
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Results for case study VII in Chapter 5

Feature Set of seeds detected Plant developed Plant modified Fe.a ture
class validated
{f1134 > f1082 > fs75 } no
{f1234 ’ f1259 ’ f1247 ’ fxzzo} no
{f156w 12’93, 1{3112: 115181’
{f1569sf1593’f|412} no
1556’f1398
{f‘1187’f‘1206’-fll74} no
{f1384’f1372af1359} no
{ S0} {fsﬁo , f836 no
{f836} {f860> 335 no
{f1287 sfma sflsooafmz} no
{12345 11135 Fra125 o2 {fi325} {f13465f1325 no
f1312,fls93’f1638’f1003, {fwse’flow, 9osafxoosa
f1346 > fms af;;so 9f1556 s {f905} f f no
918’ 1022 >/ 993
f1623’f836’f13989f|636>
{fmsaflmafnonflsss:
flsoo’fnusfnovflssla o) no
1662
ﬁ]61>ﬁ3723ﬁ2205ﬁ287’ {f )
no
fns7,f1384’f13253f1531’ 1161
st f875 ’ f905 ’ f1543 D f|247 s {f1623 > fl648 > flese} no
1l 1
.f9185/14339f1122,fi451: {fi569’ 1593’ 14125 ./ 1581>
{»/1581 > »fi556 H f;398} i )it no
f1359’f1609,f1648’f1259> 1556’f|393
flsoaafmssfloas:fnsu {f ) {f f
no
f993’f£475’fi061’/.1492’ 1346 13462 /1325
fwsz’fmz’flm’flm’ {f1492» 1?7/5, 1451:f1543’ no
ﬁ049aﬂ206} {f1475af1492’f1543’f15319 fi433}
f h fsw f1433} w
131 21306 T13I92 {f1475’f1531’f1506a 1451
no
f1519}
{f1122} no
{f1609} no
{fwm} no
{f1036 ’ f1049 > floos s fmzz > {f1036 > f1049 s .f1008 > flozz >
no
f993} 993’ 9os’f
{ﬁ036,f1049a 9os’floosa
{f918}‘ no

918 4 fi022 > f993

Table D.3 Results for the feature class st
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Appendix E - Results for case study VIl in Chapter 5

This appendix consists of three tables that report the results of the recognition process

carried out on the part used for case study VIII in Chapter 5.

Feature Set of seeds detected Plant developed Plant modified Fe.a ture
class validated
po_re ©)
{f741’f1019af953sf968} no
po ob {flnosfssz sf697 af1098’ {fesz,fssw} no
- Soss»> foos } {f1098> Sr110} no
{fns > f1007 s f1ss f995 } no
ho_bl {0}
{fe7) {f637 > 618 > 667 } no
{for0} no
{f1045 } no
{f 898 } no
{fi110> froos} yes
{fos2s Soor) yes
{fron} {flgslz > 1(1)1518 > 1{)1;3 no
{f11105f783af1032’f637’ {Fuss) no
558
Sror1s Sroas s faars s (fras} no
783
ho_th Ses2> Foor> For3s Froos
{fonr} no
Ss72> Sass> Seer s fsss
Focis forcs Fuons fross {fe1s} {f637’ 618’ 667} no
1058 >J 910> S 898> S 1083 >
{foe1} {f637 > 618 > 667 - no
{fros8} { fron2 > Jro5s > o83 no
{f1o83} {f1g3[2 > 161518 > 1{)1é3 no
{fors} no
e} no
{fsss } no
{flon } no

Table E.1 Results for the feature classes po_re, po_ob, ho_bl and ho_th
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Results for case study VIII in Chapter 5

Fz?;:sre Set of seeds detected Plant developed Plant modified VI;;?:;Z
pr_ci {9}
pr_re {0}
{fion} {fio%2> 131513 » Fross yes
{feis} {f637 ) 618’ 667} no
{foar} no
{f819’f795} no
{fass} no
{12%} no
{f783 > f741 > fso7 > f725 > {ferr} no
Jro325 fexr> Fsios Froor» . {f(m , m , 667 1y o
Joo3s Jrsss Faars Forso Fross) {flg312’ 131518, 1{)1;3 yes
sl_th | fo555 fr055 Ss72> fass
Jo61> Ssss> Frosss Foros Uosao Jrrs s Joa) it
Sosos Josrs Fross> Srore Ve {f637 ’fm’ 667 7o
f953 } {/: 023 } no
{f12s5 floo7 s J1s8> f995 } no
{]gm’fﬁo} no
{fs07> foos } no
{f153} no
{j;m} no
{1083} {fxgslz > 161518 > 1%3 yes
{fs07> foo3} no
{f819’f795} no
sl nt {11105 Ss075 Sio07> Jos2 {f682 » Joor ) no
- f795af10199f953} {fmosflon} no
{f725 > f1007 > f758 > f995 } no
{fos3s fra> Sro105 foes } no

Table E.2 Results for the feature classes pr_ci, pr_re, sl_th and sl_nt
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Results for case study VIII in Chapter 5

Fzzlu;:sre Set of seeds detected Plant developed Plant modified vl‘;i;:lt:tre ed
{f953’f741’f1019’f968} no
{]%u} no
I7;

{flon} {flgslz > 1gsls »J 1083 no

{fsss} no

{fors} no

{fos1> Soao} yes

{f183> Fra1> Jaor s Jras {fer} no

Jiosz> Jexa> Faro» Jroon {fer} {f;m > 618’ 667} no

So03> frsa> Saar> Jorso
{783} no
st Jo23> Jross Jaras Sass s i

{feer} {f637 s J 618> 667 } no

f667af588’f1058af910> G o} yes
Sou0> Fos1s Jross> Srors il

Foss} {f61s} {f 6372 618’ 667} no

953 )

910 no

{fr9s> far0} yes

{fross {fxf)lslz > 161518 s 1{)1;3 no

{fsss} no

{fioss} {fl(lgz > 1{)1518 > 13143 no

{fo255 Sr007> Sses Soos ) no

Table E.3 Results for the feature class st
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