77 research outputs found

    The impact of delayed development on the quality of life of adults with end-stage renal disease since childhood

    Get PDF
    Little is known about the impact of the course of life of children with end-stage renal disease (ESRD) on their quality of life in adulthood. We therefore assessed the course of life of adult patients with onset of ESRD at an age of <15 years between 1972 and 1992 and compared it with that of the general population. Furthermore, we explored how course of life is associated with quality of life (QoL) in young adulthood. A total of 75 young adult patients who had had ESRD since childhood, aged between 20 years and 30 years, completed the RAND-36 Health Survey and a questionnaire, which retrospectively assesses the achievement of development milestones. Patients achieved fewer milestones than peers with respect to autonomy, social, and psycho-sexual development, and displayed less risk behaviour. Patients who achieved fewer social milestones while growing up experienced more emotional problems and less vitality, and they had a lesser overall mental quality of life. Paediatric nephrologists should pay more attention to the development of social and independent functioning of children with ESRD in order to prepare them for active participation in society in adult life. © IPNA 2006

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly

    Get PDF
    Author Posting. © American Society for Cell Biology, 2009. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 20 (2009): 2766-2773, doi:10.1091/mbc.E09-01-0043.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.This work was supported by the American Cancer Society (grant PF0711401 to T. J. Maresca), the National Cancer Institute (grant CA078048-09 to T. J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J. C. Gatlin and grant GM24364 to E. D. Salmon)

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly

    Microtubule movements on the arms of mitotic chromosomes: Polar ejection forces quantified in vitro

    No full text
    During mitosis, “polar ejection forces” (PEFs) are hypothesized to direct prometaphase chromosome movements by pushing chromosome arms toward the spindle equator. PEFs are postulated to be caused by (i) plus-end-directed microtubule (MT)-based motor proteins on the chromosome arms, namely chromokinesins, and (ii) the polymerization of spindle MTs into the chromosome. However, the exact role of PEFs is unclear, because little is known about their magnitude or their forms (e.g., impulsive vs. sustained, etc.). In this study, we employ optical tweezers to bring about the lateral interaction between chromosome arms and MTs in vitro to directly measure the speed and force of the PEFs developed on chromosome arms. We find that forces are unidirectional and frequently exceed 1 pN, with maximum forces of 2–3 pN and peak velocities of 63 ± 41 nm/s; the movements are ATP-dependent and exhibit a characteristic noncontinuous motion that includes displacements of >50 nm, stalls, and backwards slippage of the MT even under low loads. We perform experiments using antibodies to the chromokinesins Kid and KIF4 that identify Kid as the principal force-producing agent for PEFs. At first glance, this motor activity appears surprisingly weak and erratic, but it explains how PEFs can guide chromosome movements without severely deforming or damaging the local chromosome structure

    XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region

    No full text
    XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215’s overall affinity for free tubulin. The mutants’ overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a “bonsai” protein, with two TOG domains and a basic region, that has almost full polymerase activity
    corecore