2,931 research outputs found

    Environmental Site Characterization and Risk-Based Evaluation of a Site Contaminated with Tetrachloroethene (PCE) and Trichloroethene (TCE)

    Get PDF
    A healthcare company purchased property in eastern Iowa for a facility expansion. Before the purchase, a Phase I environmental site assessment (ESA) revealed that the property was the site of a former dry cleaning business. Phase II sampling and testing indicated that tetrachloroethene (PCE) and trichloroethene (TCE) had affected site soil and groundwater. Maximum concentrations of PCE and TCE in groundwater were 538 and 209 ”g/L, respectively, and 105 and 1.51 mg/kg in soil. Additional sampling delineated the vertical and horizontal extent of contamination in the soil. The concentrations of the chlorinated solvents in both the soil and groundwater were below levels of regulatory concern. However, the company was concerned that the Iowa statewide standard for PCE in soil (780 mg/kg) might not provide adequate protection for several exposure pathways and wanted to assess the risk to the public from the contamination at the site. The results of a receptor survey were used to develop site-specific target levels (SSTLs) for contamination, using accepted human health exposure factors, models, and chemical-specific toxicity values. The recommended remedial options allowed the company to minimize the human health risks posed by contamination at the site

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Application of robotics In the clinical laboratory

    Get PDF
    The basic types of robot are explained, and the performances and costs of some commercial examples are given. The potential advantages and problems of introducing robots into clinical laboratories are identified and the specifcation of a suitable robot is developed. None of the commercially available robots meets all aspects of the specificalion, and currently the purchase of a robot is considered premature for most clinical laboratories

    Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury

    Get PDF
    Umbilical cord blood (UCB) represents a readily available source of hematopoietic and endothelial precursors at early ontogeny. Understanding the proangiogenic functions of these somatic progenitor subtypes after transplantation is integral to the development of improved cell-based therapies to treat ischemic diseases. We used fluorescence-activated cell sorting to purify a rare (\u3c0.5%) population of UCB cells with high aldehyde dehydrogenase (ALDHhi) activity, a conserved stem/progenitor cell function. ALDHhicells were depleted of mature monocytes and T- and B-lymphocytes and were enriched for early myeloid (CD33) and stem cell-associated (CD34, CD133, and CD117) phenotypes. Although these cells were primarily hematopoietic in origin, UCB ALDHhi cells demonstrated a proangiogenic transcription profile and were highly enriched for both multipotent myeloid and endothelial colony-forming cells in vitro. Coculture of ALDHhi cells in hanging transwells promoted the survival of human umbilical vein endothelial cells (HUVEC) under growth factor-free and serum-free conditions. On growth factor depleted matrigel, ALDHhicells significantly increased tube-like cord formation by HUVEC. After induction of acute unilateral hind limb ischemia by femoral artery ligation, transplantation of ALDHhi cells significantly enhanced the recovery of perfusion in ischemic limbs. Despite transient engraftment in the ischemic hind limb, early recruitment of ALDHhi cells into ischemic muscle tissue correlated with increased murine von Willebrand factor blood vessel and CD31+ capillary densities. Thus, UCB ALDHhi cells represent a readily available population of proangiogenic progenitors that promote vascular regeneration. This work provides preclinical justification for the development of therapeutic strategies to treat ischemic diseases using UCB-derived ALDH hi mixed progenitor cells. © AlphaMed Press

    An Empirical Charge Transfer Potential with Correct Dissociation Limits

    Full text link
    The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) Explicit decomposition of the total system electron density is invoked; (2) The charge is defined through the density decomposition into constituent contributions; (3) The charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) A reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien

    Simulations of Two-Dimensional Melting on the Surface of a Sphere

    Get PDF
    We have simulated a system of classical particles confined on the surface of a sphere interacting with a repulsive r−12r^{-12} potential. The same system simulated on a plane with periodic boundary conditions has van der Waals loops in pressure-density plots which are usually interpreted as evidence for a first order melting transition, but on the sphere such loops are absent. We also investigated the structure factor and from the width of the first peak as a function of density we can show that the growth of the correlation length is consistent with KTHNY theory. This suggests that simulations of two dimensional melting phenomena are best performed on the surface of a sphere.Comment: 4 eps figure
    • 

    corecore