9 research outputs found

    Identifying Atrial Fibrillation Mechanisms for Personalized Medicine

    No full text
    Atrial fibrillation (AF) is a major cause of heart failure and stroke. The early maintenance of sinus rhythm has been shown to reduce major cardiovascular endpoints, yet is difficult to achieve. For instance, it is unclear how discoveries at the genetic and cellular level can be used to tailor pharmacotherapy. For non-pharmacologic therapy, pulmonary vein isolation (PVI) remains the cornerstone of rhythm control, yet has suboptimal success. Improving these therapies will likely require a multifaceted approach that personalizes therapy based on mechanisms measured in individuals across biological scales. We review AF mechanisms from cell-to-organ-to-patient from this perspective of personalized medicine, linking them to potential clinical indices and biomarkers, and discuss how these data could influence therapy. We conclude by describing approaches to improve ablation, including the emergence of several mapping systems that are in use today

    Machine learning facilitates the prediction of long-term mortality in patients with tricuspid regurgitation

    No full text
    Objective Tricuspid regurgitation (TR) is a prevalent valve disease associated with significant morbidity and mortality. We aimed to apply machine learning (ML) to assess risk stratification in patients with ≥moderate TR.Methods Patients with ≥moderate TR on echocardiogram between January 2005 and December 2016 were retrospectively included. We used 70% of data to train ML-based survival models including 27 clinical and echocardiographic features to predict mortality over a 3-year period on an independent test set (30%). To account for differences in baseline comorbidities, prediction was performed in groups stratified by increasing Charlson Comorbidity Index (CCI). Permutation feature importance was calculated using the best-performing model separately in these groups.Results Of 13 312 patients, mean age 72 ± 13 years and 7406 (55%) women, 7409 (56%) had moderate, 2646 (20%) had moderate–severe and 3257 (24%) had severe TR. The overall performance for 1-year mortality by 3 ML models was good, c-statistic 0.74–0.75. Interestingly, performance varied between CCI groups, (c-statistic = 0.774 in lowest CCI group and 0.661 in highest CCI group). The performance decreased over 3-year follow-up (average c-index 0.78). Furthermore, the top 10 features contributing to these predictions varied slightly with the CCI group, the top features included heart rate, right ventricular systolic pressure, blood pressure, diuretic use and age.Conclusions Machine learning of common clinical and echocardiographic features can evaluate mortality risk in patients with TR. Further refinement of models and validation in prospective studies are needed before incorporation into the clinical practice

    Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies

    No full text
    Background: Ventricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent causes of death and pose a high burden on public health systems worldwide. The increasing availability of electrophysiological signals collected through conventional methods (e.g. electrocardiography (ECG)) and digital health technologies (e.g. wearable devices) in combination with novel predictive analytics using machine learning (ML) and deep learning (DL) hold potential for personalised predictions of arrhythmic events. Methods: This systematic review and exploratory meta-analysis assesses the state-of-the-art of ML/DL models of electrophysiological signals for personalised prediction of malignant VA or SCD, and studies potential causes of bias (PROSPERO, reference: CRD42021283464). Five electronic databases were searched to identify eligible studies. Pooled estimates of the diagnostic odds ratio (DOR) and summary area under the curve (AUROC) were calculated. Meta-analyses were performed separately for studies using publicly available, ad-hoc datasets, versus targeted clinical data acquisition. Studies were scored on risk of bias by the PROBAST tool. Findings: 2194 studies were identified of which 46 were included in the systematic review and 32 in the meta-analysis. Pooling of individual models demonstrated a summary AUROC of 0.856 (95% CI 0.755–0.909) for short-term (time-to-event up to 72 h) prediction and AUROC of 0.876 (95% CI 0.642–0.980) for long-term prediction (time-to-event up to years). While models developed on ad-hoc sets had higher pooled performance (AUROC 0.919, 95% CI 0.867–0.952), they had a high risk of bias related to the re-use and overlap of small ad-hoc datasets, choices of ML tool and a lack of external model validation. Interpretation: ML and DL models appear to accurately predict malignant VA and SCD. However, wide heterogeneity between studies, in part due to small ad-hoc datasets and choice of ML model, may reduce the ability to generalise and should be addressed in future studies. Funding: This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council ( NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T)

    sj-docx-1-jpc-10.1177_21501319231199014 – Supplemental material for The Use of Telemedicine to Improve Hypertension in an Urban Primary Care Clinic and Predictors of Improved Blood Pressure

    No full text
    Supplemental material, sj-docx-1-jpc-10.1177_21501319231199014 for The Use of Telemedicine to Improve Hypertension in an Urban Primary Care Clinic and Predictors of Improved Blood Pressure by Ajay Kerai, Namratha Meda, Khushboo Agarwal, Mohil Garg, Brototo Deb, Pooja Singh, Puneet Singla, Tareq Arar, Godwin Darko and Nnenna Oluigbo in Journal of Primary Care & Community Health</p

    Deep Learning for Ventricular Arrhythmia Prediction Using Fibrosis Segmentations on Cardiac MRI Data

    No full text
    Many patients at high risk of life-threatening ventricular arrhythmias (VA) and sudden cardiac death (SCD) who received an implantable cardioverter defibrillator (ICD), never receive appropriate device therapy. The presence of fibrosis on LGE CMR imaging is shown to be associated with increased risk of VA. Therefore, there is a strong need for both automatic segmentation and quantification of cardiac fibrosis as well as better risk stratification for SCD. This study first presents a novel two-stage deep learning network for the segmentation of left ventricle myocardium and fibrosis on LGE CMR images. Secondly it aims to effectively predict device therapy in ICD patients by using a graph neural network approach which incorporates both myocardium and fibrosis features as well as the left ventricle geometry. Our segmentation network outperforms previous state-of-the-art methods on 2D CMR data, reaching a Dice score of 0.82 and 0.77 on myocardium and fibrosis segmentation, respectively. The ICD therapy prediction network reaches an AUC of 0.60 while using only CMR data and outperforms baseline methods based on current guideline markers for ICD implantation. This work lays a strong basis for future research on improved risk stratification for VA and SCD

    Dynamic prediction of malignant ventricular arrhythmias using neural networks in patients with an implantable cardioverter-defibrillatorResearch in context

    No full text
    Summary: Background: Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. Methods: A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. Findings: 2942 patients (61.7 ± 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 ± 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 ± 0.07, compared to 0.639 ± 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. Interpretation: Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. Funding: This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T)

    Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit

    No full text
    Aims Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. Methods and results A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80–1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75–0.84). Conclusions ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort.ISSN:1099-5129ISSN:1532-209

    Constipation and Fecal Incontinence in the Elderly

    No full text
    corecore