92 research outputs found

    Disproving inductive entailments in separation logic via base pair approximation

    Get PDF
    We give a procedure for establishing the invalidity of logical entailments in the symbolic heap fragment of separation logic with user-defined inductive predicates, as used in program verification. This disproof procedure attempts to infer the existence of a countermodel to an entailment by comparing computable model summaries, a.k.a. bases (modified from earlier work), of its antecedent and consequent. Our method is sound and terminating, but necessarily incomplete. Experiments with the implementation of our disproof procedure indicate that it can correctly identify a substantial proportion of the invalid entailments that arise in practice, at reasonably low time cost. Accordingly, it can be used, e.g., to improve the output of theorem provers by returning “no” answers in addition to “yes” and “unknown” answers to entailment questions, and to speed up proof search or automated theory exploration by filtering out invalid entailments

    Model checking for symbolic-heap separation logic with inductive predicates

    Get PDF
    We investigate the model checking problem for symbolic-heap separation logic with user-defined inductive predicates, i.e., the problem of checking that a given stack-heap memory state satisfies a given formula in this language, as arises e.g. in software testing or runtime verification. First, we show that the problem is decidable; specifically, we present a bottom-up fixed point algorithm that decides the problem and runs in exponential time in the size of the problem instance. Second, we show that, while model checking for the full language is EXPTIME-complete, the problem becomes NP-complete or PTIME-solvable when we impose natural syntactic restrictions on the schemata defining the inductive predicates. We additionally present NP and PTIME algorithms for these restricted fragments. Finally, we report on the experimental performance of our procedures on a variety of specifications extracted from programs, exercising multiple combinations of syntactic restrictions

    A decision procedure for satisfiability in separation logic with inductive predicates

    Get PDF
    We show that the satisfiability problem for the "symbolic heap" fragment of separation logic with general inductively defined predicates - which includes most fragments employed in program verification - is decidable. Our decision procedure is based on the computation of a certain fixed point from the definition of an inductive predicate, called its "base", that exactly characterises its satisfiability. A complexity analysis of our decision procedure shows that it runs, in the worst case, in exponential time. In fact, we show that the satisfiability problem for our inductive predicates is EXPTIME-complete, and becomes NP-complete when the maximum arity over all predicates is bounded by a constant. Finally, we provide an implementation of our decision procedure, and analyse its performance both on a synthetically generated set of test formulas, and on a second test set harvested from the separation logic literature. For the large majority of these test cases, our tool reports times in the low milliseconds

    Deciding Entailments in Inductive Separation Logic with Tree Automata

    Full text link
    Separation Logic (SL) with inductive definitions is a natural formalism for specifying complex recursive data structures, used in compositional verification of programs manipulating such structures. The key ingredient of any automated verification procedure based on SL is the decidability of the entailment problem. In this work, we reduce the entailment problem for a non-trivial subset of SL describing trees (and beyond) to the language inclusion of tree automata (TA). Our reduction provides tight complexity bounds for the problem and shows that entailment in our fragment is EXPTIME-complete. For practical purposes, we leverage from recent advances in automata theory, such as inclusion checking for non-deterministic TA avoiding explicit determinization. We implemented our method and present promising preliminary experimental results

    Automatic cyclic termination proofs for recursive procedures in separation logic

    Get PDF
    We describe a formal verification framework and tool implementation, based upon cyclic proofs, for certifying the safe termination of imperative pointer programs with recursive procedures. Our assertions are symbolic heaps in separation logic with user defined inductive predicates; we employ explicit approximations of these predicates as our termination measures. This enables us to extend cyclic proof to programs with procedures by relating these measures across the pre- and postconditions of procedure calls. We provide an implementation of our formal proof system in the Cyclist theorem proving framework, and evaluate its performance on a range of examples drawn from the literature on program termination. Our implementation extends the current state-of-the-art in cyclic proof-based program verification, enabling automatic termination proofs of a larger set of programs than previously possible

    Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi

    Full text link
    We have recently presented a general method of proving the fundamental logical properties of Craig and Lyndon Interpolation (IPs) by induction on derivations in a wide class of internal sequent calculi, including sequents, hypersequents, and nested sequents. Here we adapt the method to a more general external formalism of labelled sequents and provide sufficient criteria on the Kripke-frame characterization of a logic that guarantee the IPs. In particular, we show that classes of frames definable by quantifier-free Horn formulas correspond to logics with the IPs. These criteria capture the modal cube and the infinite family of transitive Geach logics

    On Automated Lemma Generation for Separation Logic with Inductive Definitions

    Get PDF
    Separation Logic with inductive definitions is a well-known approach for deductive verification of programs that manipulate dynamic data structures. Deciding verification conditions in this context is usually based on user-provided lemmas relating the inductive definitions. We propose a novel approach for generating these lemmas automatically which is based on simple syntactic criteria and deterministic strategies for applying them. Our approach focuses on iterative programs, although it can be applied to recursive programs as well, and specifications that describe not only the shape of the data structures, but also their content or their size. Empirically, we find that our approach is powerful enough to deal with sophisticated benchmarks, e.g., iterative procedures for searching, inserting, or deleting elements in sorted lists, binary search tress, red-black trees, and AVL trees, in a very efficient way

    Decision Procedure for Entailment of Symbolic Heaps with Arrays

    Full text link
    This paper gives a decision procedure for the validity of en- tailment of symbolic heaps in separation logic with Presburger arithmetic and arrays. The correctness of the decision procedure is proved under the condition that sizes of arrays in the succedent are not existentially bound. This condition is independent of the condition proposed by the CADE-2017 paper by Brotherston et al, namely, one of them does not imply the other. For improving efficiency of the decision procedure, some techniques are also presented. The main idea of the decision procedure is a novel translation of an entailment of symbolic heaps into a formula in Presburger arithmetic, and to combine it with an external SMT solver. This paper also gives experimental results by an implementation, which shows that the decision procedure works efficiently enough to use

    Automatically verifying temporal properties of pointer programs with cyclic proof

    Get PDF
    We propose a deductive reasoning approach to the automatic verification of temporal properties of pointer programs, based on cyclic proof. We present a proof system whose judgements express that a program has a certain temporal property over memory state assertions in separation logic, and whose rules operate directly on the temporal modal-ities as well as symbolically executing programs. Cyclic proofs in our system are, as usual, finite proof graphs subject to a natural, decidable soundness condition, encoding a form of proof by infinite descent. We present a proof system tailored to proving CTL properties of non-deterministic pointer programs, and then adapt this system to handle fair execution conditions. We show both systems to be sound, and provide an implementation of each in the Cyclist theorem prover, yielding an automated tool that is capable of automatically discovering proofs of (fair) temporal properties of heap-aware programs. Experimental evaluation of our tool indicates that our approach is viable, and offers an interesting alternative to traditional model checking techniques
    • …
    corecore