4 research outputs found

    Current shear and turbulence during a near-inertial wave

    Get PDF
    Surface currents and turbulent mixing were observed during a near-inertial wave (NIW) using an accousting doppler current profiler (ADCP) and satellite-tracked drifters. Drifter trajectories sampled at three depth levels show characteristics of an Ekman solution superposed with the NIW. Velocity and dissipation estimates from the ADCP reveal strong shear with a distinct constant flux layer in between the roughness length and a critical depth at 4m. Below, a shear free slab layer performing an inertial oscillation is observed. Dissipation, as estimated from the vertical beam of the ADCP, peaks in the wave-enhanced friction layer when the current opposes the wind and wave direction. Below the constant flux layer, maximum turbulence is observed when the NIW is in a phase that is in opposite direction to the time-averaged current. During this phase, currents at various depths rapidly realign in the entire boundary layer.publishedVersio

    Exploring drift simulations from ocean circulation experiments: Application to cod eggs and larval drift

    No full text
    Drift models are commonly used to study the transport of early life stages of fish and other marine organisms. Various approaches may be applied to examine the distribution and variability of ocean trajectory pathways. In the present study, we compare results using passive Eulerian tracers and Lagrangian float trajectories that are embedded in numerical models. We supplement this analysis by applying an offline model for drift computations. The contrasts in the results from the various configurations are mainly due to differences in drift depth. Simulations were performed using horizontal resolutions of 4 and 0.8 km. The higher-resolution experiment gives somewhat more realistic results for the drift time from Lofoten to the Tromsøflaket bank at the southwestern entrance of the Barents Sea. Furthermore, differences in results between simulation years are much larger than the differences that arise from the choice of model configuration. Climate variability at high latitudes on a multi-decadal time scale is dominated by large interannual variability superimposed on an underlying moderate warming trend. We conclude that a properly configured offline drift model using hourly or 2-hourly results from a simulation with a horizontal resolution of 1 km or finer is the best approach for investigations of trajectory pathways. The flexibility of an offline drift model is also highly advantageous in biological contexts, as it easily allows for a variety of ways in which behavioural characteristics can be parameterized, including descriptions that are defined after the ocean circulation simulation has been executed

    Evaluation of selected finite-difference and finite-volume approaches to rotational shallow-water flow

    No full text
    The shallow-water equations in a rotating frame of reference are important for capturing geophysical flows in the ocean. In this paper, we examine and compare two traditional finite-difference schemes and two modern finite-volume schemes for simulating these equations. We evaluate how well they capture the relevant physics for problems such as storm surge and drift trajectory modelling, and the schemes are put through a set of six test cases. The results are presented in a systematic manner through several tables, and we compare the qualitative and quantitative performance from a cost-benefit perspective. Of the four schemes, one of the traditional finitedifference schemes performs best in cases dominated by geostrophic balance, and one of the modern finite-volume schemes is superior for capturing gravity-driven motion. The traditional finite-difference schemes are significantly faster computationally than the modern finite-volume schemes

    Evaluation of selected finite-difference and finite-volume approaches to rotational shallow-water flow

    No full text
    The shallow-water equations in a rotating frame of reference are important for capturing geophysical flows in the ocean. In this paper, we examine and compare two traditional finite-difference schemes and two modern finite-volume schemes for simulating these equations. We evaluate how well they capture the relevant physics for problems such as storm surge and drift trajectory modelling, and the schemes are put through a set of six test cases. The results are presented in a systematic manner through several tables, and we compare the qualitative and quantitative performance from a cost-benefit perspective. Of the four schemes, one of the traditional finitedifference schemes performs best in cases dominated by geostrophic balance, and one of the modern finite-volume schemes is superior for capturing gravity-driven motion. The traditional finite-difference schemes are significantly faster computationally than the modern finite-volume schemes
    corecore