277 research outputs found
Preparation of 9-fluoro-9-deoxy-N-[2-14C]acetylneuraminic acid Activation and transfer onto asialo-α1-acid glycoprotein
Abstract9-Fluoro-9-deoxy-N-[2-14C]acetylneuraminic acid has been prepared from 6-fluoro-6-deoxy-N-acetylmannosamine and [2-14C]pyruvic acid for the first time, using Clostridium perfringens N-acetylneuraminate pyruvate-lyase (EC 4.1.3.3). The fluoro sugar was activated by CMP-N-acetylneuraminic acid synthase and CTP to yield CMP-9-fluoro-9-deoxy-N-[2-14C]acetylneuraminic acid. Both products were obtained in good yield (60 and 30%, respectively). The radioactive sugar in its activated form is glycosidically attached to asialo-α1-acid glycoprotein by sialyltransferase and can be removed by the action of Vibrio cholerae sialidase. The reaction rates of the enzymes studied are lower with the 9-fluoro derivatives than with the N-acetylneuraminic acid substrates
Transfer of an Esterase-Resistant Receptor Analog to the Surface of Influenza C Virions Results in Reduced Infectivity Due to Aggregate Formation
AbstractA synthetic sialic acid,N-acetyl-9-thioacetamidoneuraminic acid (9-ThioAcNeu5Ac), is recognized by influenza C virus as a receptor determinant but—in contrast to the natural receptor determinant,N-acetyl-9-O-acetylneuraminic acid—is resistant to inactivation by the viral acetylesterase. This sialic acid analog was used to analyze the importance of the receptor-destroying enzyme of influenza C virus in keeping the viral surface free of receptor determinants. Enzymatic transfer of 9-ThioAcNeu5Ac to the surface of influenza C virions resulted in the loss of the hemagglutinating activity. The ability to agglutinate erythrocytes was restored when the synthetic sialic acid was released from the viral surface by neuraminidase treatment. Infectivity of influenza C virus containing surface-bound 9-ThioAcNeu5Ac was reduced about 20-fold. Sedimentation analysis as well as electron microscopy indicated that virions resialylated with the esterase-resistant sialic acid analog formed virus aggregates. These results indicate that the receptor-destroying enzyme of influenza C virus is required to avoid the presence of receptor determinants on the virion surface and thus to prevent aggregate formation and a reduction of the infectious titer
The Use of a Quantitative Fusion Assay to Evaluate HN–Receptor Interaction for Human Parainfluenza Virus Type 3
AbstractSialic acid is the receptor determinant for the human parainfluenza virus type 3 (HPF3) hemagglutinin–neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. In order for the fusion protein (F) of HPF3 to promote membrane fusion, HN must interact with its receptor. In addition to its role in receptor binding and fusion promotion, the HPF3 HN molecule contains receptor-destroying (sialidase) activity. The putative active sites are in the extracellular domain of this type II integral membrane protein. However, HN is not available in crystalline form; the exact locations of these sites, and the structural requirements for binding to the cellular receptor, which has not yet been isolated, are unknown. Nor have small molecular synthetic inhibitors of attachment or fusion that would provide insight into these processes been identified. The strategy in the present study was to develop an assay system that would provide a measure of a specific step in the viral cycle—functional interaction between viral glycoproteins and the cell during attachment and fusion—and serve to screen a variety of substances for inhibitory potential. The assay is based on our previous finding that CV-1 cells persistently infected (p.i.) with HPF3 do not fuse with one another but that the addition of uninfected CV-1 cells, supplying the critical sialic acid containing receptor molecules that bind HN, results in rapid fusion. In the present assay two HeLa cell types were used: we persistently infected HeLa-LTR-βgal cells, assessed their fusion with uninfected HeLa-tat cells, and then quantitated the β-galactosidase (βgal) produced as a result of this fusion. The analog α-2-S-methyl-5-N-thioacetylneuraminic acid (α-Neu5thioAc2SMe) interfered with fusion, decreasing βgal production by 84% at 50 mM and by 24% at 25 mM. In beginning to extend our studies to different types of molecules, we tested an unsaturated derivative of sialic acid, 2,3-dehydro-2-deoxy-n-acetyl neuraminic acid (DANA), which is known to inhibit influenza neuraminidase by virtue of being a transition-state analog. We found that 10 mM DANA inhibited neuraminidase activity in HPF3 viral preparations. More significantly, this compound was active in our assay of HN–receptor interaction; 10 mM DANA completely blocked fusion and βgal production, and hemadsorption inhibition by DANA suggested that DANA blocks attachment. In plaque reduction assays performed with the compounds, the active analog α-Neu5thioAc2SMe reduced plaque formation by 50% at a 50 mM concentration; DANA caused a 90% inhibition in the plaque reduction assay at a concentration of 25 mM. Our results indicate that specific sialic acid analogs that mimic the cellular receptor determinant of HPF3 can block virus cell interaction and that an unsaturated n-acetyl-neuraminic acid derivative with affinity to the HN site responsible for neuraminidase activity also interferes with HN–receptor binding. Strategies suggested by these findings are now being pursued to obtain information regarding the relative locations of the active sites of HN and to further elucidate the relationship between the receptor-binding and receptor-destroying activities of HN during the viral life cycle. The quantitative assay that we describe is of immediate applicability to large-scale screening for potential inhibitors of HPF3 infection in vivo
Specificity of the binding site of the sialic acid-binding lectin from ovine placenta, deduced from interactions with synthetic analogues
The specificity of the sialic acid-binding lectin from ovine placenta was examined in detail by haemagglutination inhibition assays applying a panel of 32 synthetic sialic acid analogues. The carboxylic acid group is a prerequisite for the interaction with the lectin, the α-anomer of the methyl glycoside is only a little more effective as an inhibitor than the β-anomer and the most potent inhibitor was 9-deoxy-10-carboxylic acid Neu5Ac, followed by 4-oxo-Neu5Ac. In contrast to the majority of known sialic acid-binding lectins, the N-acetyl group of Neu5Ac is not indispensable for binding, neither is the hydroxyl group at C-9 since substitutions at this carbon atom are well tolerated. Furthermore, all sulfur-containing substituents at C-9 enhanced the affinity of the lectin. This is the first sialic acid-binding lectin found to strongly bind thio derivatives.Fil: Troncoso, MarÃa Fernanda. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de QuÃmica y FÃsico-QuÃmica Biológicas ; ArgentinaFil: Iglesias, Maria Mercedes. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de QuÃmica y FÃsico-QuÃmica Biológicas ; ArgentinaFil: Isecke, Rainer. Universitat Heidelberg; AlemaniaFil: Wolfenstein, Carlota Elisa. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de QuÃmica y FÃsico-QuÃmica Biológicas ; ArgentinaFil: Brossmer, Reinhard. Universitat Heidelberg; Alemani
Bcl-2 antagonizes apoptotic cell death induced by two new ceramide analogues
AbstractCeramides which arise in part from the breakdown of sphingomyelin comprise a class of antiproliferative lipids and have been implicated in the regulation of programmed cell death better known as apoptosis. In the present study, two new synthetic ceramide analogues, N-thioacetylsphingosine and FS-5, were used in Molt4 cells to induce cell death. Besides their cytotoxic effects at concentrations ≥14 μM the data obtained clearly show that both analogues induced apoptosis at concentrations below this critical concentration as assessed by trypan blue exclusion and cleavage of the death substrate poly-(ADP-ribose) polymerase (PARP). Additional experiments in bcl-2-transfected Molt4 cells revealed that the apoptotic but not the lytic effects of the analogues were antagonized by the apoptosis inhibitor Bcl-2. Furthermore, neither N-thio-acetylsphingosine nor FS-5 induced PARP cleavage in bcl-2-transfected Molt4 cells indicating that the induction of apoptotic cell death by cell permeable ceramides is not due to unspecific disturbance of the cell membrane
Photoaffinity labeling of the lysosomal neuraminidase from bovine testis
Abstract
ASA-NeuAc2en, a photoreactive arylazide derivative of sialic acid, is shown to be a powerful competitive inhibitor of lysosomal neuraminidase from bovine testis (Ki ≈ 21 μM). Photoaffinity labeling and partial purification of preparations containing this lysosomal neuraminidase activity result in specifically and non-specifically labeled polypeptides. Only labeling in a 55 kDa polypeptide is found to be specific, since it could be prevented by the competitive neuraminidase inhibitor NeuAc2en. We conclude that the 55 kDa polypeptide in the bovine testis β-galactosidase/neuraminidase/protective protein complex contains the catalytic site of neuraminidase
- …