442 research outputs found

    Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors

    Full text link
    Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations and both intrachain and interchain repulsive interactions. d-wave superconductivity, which dominates over the spin-density-wave (SDW) phase at large nesting deviations, becomes unstable to the benefit of a triplet ff-wave phase for a weak repulsive interchain backscattering term g1>0g_1^\perp>0, despite the persistence of dominant SDW correlations in the normal state. Antiferromagnetism becomes unstable against the formation of a charge-density-wave state when g1g_1^\perp exceeds some critical value. While these features persist when both Umklapp processes and interchain forward scattering (g2g_2^\perp) are taken into account, the effect of g2g_2^\perp alone is found to frustrate nearest-neighbor interchain dd- and ff-wave pairing and instead favor next-nearest-neighbor interchain singlet or triplet pairing. We argue that the close proximity of SDW and charge-density-wave phases, singlet d-wave and triplet ff-wave superconducting phases in the theoretical phase diagram provides a possible explanation for recent puzzling experimental findings in the Bechgaard salts, including the coexistence of SDW and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.Comment: 19 pages, 13 figure

    Superconductivity in an organic insulator at very high magnetic fields

    Full text link
    We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ\lambda-(BETS)2_2FeCl4_4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field {\em compensates} the exchange field of aligned Fe3+^{3+} ions. We further argue that the Fe3+^{3+} moments are essential to stabilize the resulting singlet, two-dimensional superconducting stateComment: 9 pages 3 figure

    Spin and orbital frustration in MnSc_2S_4 and FeSc_2S_4

    Full text link
    Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc_2S_4 and FeSc_2S_4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss temperature \Theta_{CW}= -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe^{2+} is orbitally frustrated. Hence, FeSc_2S_4 belongs to the rare class of spin-orbital liquids. MnSc_2S_4 is a spin liquid for temperatures T > T_N \approx 2 K.Comment: 4 pages, to be published in Physical Review Letter

    Field-induced spin density wave in (TMTSF)2_2NO3_3

    Full text link
    Interlayer magnetoresistance of the Bechgaard salt (TMTSF)2_2NO3_3 is investigated up to 50 teslas under pressures of a few kilobars. This compound, the Fermi surface of which is quasi two-dimensional at low temperature, is a semi metal under pressure. Nevertheless, a field-induced spin density wave is evidenced at 8.5 kbar above \sim 20 T. This state is characterized by a drastically different spectrum of the quantum oscillations compared to the low pressure spin density wave state.Comment: to be published in Phys. Rev. B 71 (2005

    77^{77}Se NMR evidence for the Jaccarino-Peter mechanism in the field induced superconductor, λ\lambda(BETS)2_2FeCl4_4}

    Full text link
    We have performed 77^{77}Se NMR on a single crystal sample of the field induced superconductor λ\lambda-(BETS)2_{2}FeCl4_{4}. Our results obtained in the paramagnetic state provide a microscopic insight on the exchange interaction JJ between the spins \textbf{s} of the BETS π\pi conduction electrons and the Fe localized dd spins \textbf{S}. The absolute value of the Knight shift \textbf{K} decreases when the polarization of the Fe spins increases. This reflects the ``negative'' spin polarization of the π\pi electrons through the exchange interaction JJ. The value of JJ has been estimated from the temperature and the magnetic field dependence of \textbf{K} and found in good agreement with that deduced from transport measurements (L. Balicas \textit{et al}. Phys. Rev. Lett. \textbf{87}, 067002 (2001)). This provides a direct microscopic evidence that the field induced superconductivity is due to the compensation effect predicted by Jaccarino and Peter (Phys. Rev. Lett. \textbf{9}, 290 (1962)). Furthermore, an anomalous broadening of the NMR line has been observed at low temperature, which suggests the existence of charge disproportionation in the metallic state neighboring the superconducting phase

    Magnetic field-dependent interplay between incoherent and Fermi liquid transport mechanisms in low-dimensional tau phase organic conductors

    Full text link
    We present an electrical transport study of the 2-dimensional (2D) organic conductor tau-(P-(S,S)-DMEDT-TTF)_2(AuBr)_2(AuBr_2)_y (y = 0.75) at low temperatures and high magnetic fields. The inter-plane resistivity rho_zz increases with decreasing temperature, with the exception of a slight anomaly at 12 K. Under a magnetic field B, both rho_zz and the in-plane resistivity plane rho_xx show a pronounced negative and hysteretic magnetoresistance with Shubnikov de Haas (SdH)oscillations being observed in some (high quality)samples above 15 T. Contrary to the predicted single, star-shaped, closed orbit Fermi surface from band structure calculations (with an expected approximate area of 12.5% of A_FBZ), two fundamental frequencies F_l and F_h are detected in the SdH signal. These orbits correspond to 2.4% and 6.8% of the area of the first Brillouin zone(A_FBZ), with effective masses F_l = 4.0 +/- 0.5 and F_h = 7.3 +/- 0.1. The angular dependence, in tilted magnetic fields of F_l and F_h, reveals the 2D character of the FS and Angular dependent magnetoresistance (AMRO) further suggests a FS which is strictly 2-D where the inter-plane hopping t_c is virtually absent or incoherent. The Hall constant R_xy is field independent, and the Hall mobility increases by a factor of 3 under moderate magnetic fields. Our observations suggest a unique physical situation where a stable 2D Fermi liquid state in the molecular layers are incoherently coupled along the least conducting direction. The magnetic field not only reduces the inelastic scattering between the 2D metallic layers, but it also reveals the incoherent nature of interplane transport in the AMRO spectrum. The apparent ferromagnetism of the hysteretic magnetoresistance remains an unsolved problem.Comment: 33 pages, 11 figure

    Deeply Virtual Compton Scattering off the neutron

    Full text link
    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,eγ)X({\vec e},e'\gamma)X cross section measured at Q2Q^2=1.9 GeV2^2 and xBx_B=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to EqE_q, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let

    The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV

    Get PDF
    We present final results on the photon electroproduction (epepγ\vec{e}p\rightarrow ep\gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the Q2Q^2- and xBx_B-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The Q2Q^2-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS2^2 term to the photon electroproduction cross section. The necessity to include higher-twist corrections in order to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this paper represent the final set of experimental results from E00-110, superseding the previous publication.Comment: 48 pages, 32 figure

    Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering

    Get PDF
    We present the first measurements of the \vec{e}p->epg cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q^2. The helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication. References added. One figure remove
    corecore