1,824 research outputs found

    Physiological Characterization of Stolon Regression in a Colonial Hydroid

    Get PDF
    As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H2O2 and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H2O2 or an NO donor equivalently trigger endogenous formation of both H2O2 and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth

    Near point refraction

    Get PDF
    Near point refractio

    Differential Transfer Ionization Cross Sections for 50175-keV Proton-Helium Collisions

    Get PDF
    We have measured coincidences between neutralized projectiles and He recoil ions for 50175-keV proton-helium collisions. From the data we obtained transfer ionization (TI) cross sections differential in the projectile scattering angle. Laboratory scattering angles range from 0 to 2.0 mrad. The experimental method allowed separation of the postcollision charge states of the target atoms. The ratio of the cross sections for TI to the sum of TI and single capture, F, is presented as a function of projectile scattering angle. Comparison is made to previous measurements of this ratio where data is available. The differential cross sections are compared to dynamical classical trajectory Monte Carlo (dCTMC) calculations. Agreement in the shape of the differential cross sections is good between the theory and measurement over the entire energy range

    Valence band photoemission from the GaN(0001) surface

    Full text link
    A detailed investigation by one-step photoemission calculations of the GaN(0001)-(1x1) surface in comparison with recent experiments is presented in order to clarify its structural properties and electronic structure. The discussion of normal and off-normal spectra reveals through the identified surface states clear fingerprints for the applicability of a surface model proposed by Smith et al. Especially the predicted metallic bonds are confirmed. In the context of direct transitions the calculated spectra allow to determine the valence band width and to argue in favor of one of two theoretical bulk band structures. Furthermore a commonly used experimental method to fix the valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR

    Angular-Differential Cross Sections for H(2p) Formation in Intermediate-Energy Proton-Helium Collisions

    Get PDF
    Angular-differential cross sections for charge transfer with simultaneous emission of a photon in collisions of protons with helium atoms have been measured. The incident proton energies were 25, 50, and 100 keV and the center-of-mass scattering angles were between 0 and 2.0 mrad. In the experiment, hydrogen atoms that scattered through an angle θ were detected in coincidence with photons emitted perpendicular to the scattering plane with a wavelength between 1140 and 1400 Å. Differential cross sections for capture into the 2p state of the hydrogen atom were determined from the variation in the coincidence signal with θ. The experimental results are compared with the results of a classical trajectory Monte Carlo (CTMC) simulation and with the results of a calculation for H(2p) capture using the Coulomb-Brinkman-Kramers (CBK) approximation. The agreement between the experimental results and the CTMC calculation is good at all three energies while the agreement between the shape of the data and the CBK calculation is good at 50 and 100 keV

    Maximally-localized generalized Wannier functions for composite energy bands

    Full text link
    We discuss a method for determining the optimally-localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By ``generalized Wannier functions'' we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread sum_n [ _n - _n^2 ] of the Wannier functions in real space, our method proceeds directly from the Bloch functions as represented on a mesh of k-points, and carries out the minimization in a space of unitary matrices U_mn^k describing the rotation among the Bloch bands at each k-point. The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si, GaAs, molecular C2H4, and LiCl will be presented.Comment: 22 pages, two-column style with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_wan

    FAPRI Environmental Projects 2000

    Get PDF
    Since 1995, the Food and Agricultural Policy Research Institute at the University of Missouri (FAPRI) has been providing analytical support in several areas around the state as communities try to come to grips with various water quality issues thought to derive from production agriculture's two underlying facts of life. This report provides a summary of the lessons learned as the unit has looked at and worked with these communities. It also discusses the specific projects underway in the unit, again focusing on issues directly related to the interface problem.This project is a cooperative effort of the Food and Agricultural Policy Research Institute at the University of Missouri and the Natural Resource Conservation Service. The work is supported by EPA grant X997396-01, Region VII U.S. Environmental Protection Agency, under section 104 (b) (3). The Missouri Department of Agriculture appropriated funds to support the work in this report

    The design, construction and performance of the MICE scintillating fibre trackers

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

    Maximally-localized Wannier functions for entangled energy bands

    Full text link
    We present a method for obtaining well-localized Wannier-like functions (WFs) for energy bands that are attached to or mixed with other bands. The present scheme removes the limitation of the usual maximally-localized WFs method (N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)) that the bands of interest should form an isolated group, separated by gaps from higher and lower bands everywhere in the Brillouin zone. An energy window encompassing N bands of interest is specified by the user, and the algorithm then proceeds to disentangle these from the remaining bands inside the window by filtering out an optimally connected N-dimensional subspace. This is achieved by minimizing a functional that measures the subspace dispersion across the Brillouin zone. The maximally-localized WFs for the optimal subspace are then obtained via the algorithm of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the output of conventional electronic-structure codes, is applied to the s and d bands of copper, and to the valence and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of copper we find WFs which are centered at the tetrahedral interstitial sites, suggesting an alternative tight-binding parametrization.Comment: 13 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macro
    • …
    corecore