105 research outputs found

    Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Get PDF
    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified

    Electronic and magnetic phase diagrams of Kitaev quantum spin liquid candidate Na2_2Co2_2TeO6_6

    Full text link
    The 3d7d^7 Co2+^{2+}-based insulating magnet \NCTO{} has recently been reported to have strong Kitaev interactions on a honeycomb lattice, and is thus being considered as a Kitaev quantum spin liquid candidate. However, due to the existence of other types of interactions, a spontaneous long-range magnetic order occurs. This order is suppressed by applied magnetic fields leading to a succession of phases and ultimately saturation of the magnetic moments. The precise phase diagram, the nature of the phases, and the possibility that one of the field-induced phases is a Kitaev quantum spin liquid phase are still a matter of debate. Here we measured an extensive set of physical properties to build the complete temperature-field phase diagrams to magnetic saturation at 10 T for magnetic fields along the aa- and aa^*-axes, and a partial phase diagram up to 60 T along cc. We probe the phases using magnetization, specific heat, magnetocaloric effect, magnetostriction, dielectric constant, and electric polarization, which is a symmetry-sensitive probe. With these measurements we identify all the previously incomplete phase boundaries and find new high-field phase boundaries. We find strong magnetoelectric coupling in the dielectric constant and moderate magnetostrictive coupling at several phase boundaries. Furthermore, we detect the symmetry of the magnetic order using electrical polarization measurements under magnetic fields. Based on our analysis, the absence of electric polarization under zero or finite magnetic field in any of the phases or after...Comment: LA-UR-22-3257

    Measurement of the local Jahn-Teller distortion in LaMnO_3.006

    Full text link
    The atomic pair distribution function (PDF) of stoichiometric LaMnO_3 has been measured. This has been fit with a structural model to extract the local Jahn-Teller distortion for an ideal Mn(3+)O_6 octahedron. These results are compared to Rietveld refinements of the same data which give the average structure. Since the local structure is being measured in the PDF there is no assumption of long-range orbital order and the real, local, Jahn-Teller distortion is measured directly. We find good agreement both with published crystallographic results and our own Rietveld refinements suggesting that in an accurately stoichiometric material there is long range orbital order as expected. The local Jahn-Teller distortion has 2 short, 2 medium and 2 long bonds.Comment: 5 pages, 3 postscript figures, minor change
    corecore