175 research outputs found

    A new approach to the reduction of "Carte du Ciel" plates

    Get PDF
    A new procedure for the reduction of "Carte du Ciel" plates is presented. A typical "Carte du Ciel" plate corresponding to the Bordeaux zone has been taken as an example. It shows triple exposures for each object and the modelling of the data has been performed by means of a non-linear least squares fitting of the sum of three bivariate Gaussian distributions. A number of solutions for the problems present in this kind of plates (optical aberrations, adjacency photographic effects, presence of grid lines, emulsion saturation) have been investigated. An internal accuracy of 0.1'' in x and y was obtained for the position of each of the individual exposures. The external reduction to a catalogue led to results with an accuracy of 0.16'' in x and 0.13'' in y for the mean position of the three exposures. A photometric calibration has also been performed and magnitudes were determined with an accuracy of 0.09 mags.Comment: 10 pages, 12 enclosed post-script figures, uses l-aa.sty (included). Accepted for publication in Astronomy and Astrophysics Supp. Serie

    Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in arabidopsis under solar ultraviolet radiation

    Get PDF
    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV

    Scaling Relations for Collision-less Dark Matter Turbulence

    Full text link
    Many scaling relations are observed for self-gravitating systems in the universe. We explore the consistent understanding of them from a simple principle based on the proposal that the collision-less dark matter fluid terns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. The dark turbulence will not eddy dominant reflecting the collision-less property. After deriving Kolmogorov scaling laws from Navier-Stokes equation by the method similar to the one for Smoluchowski coagulation equation, we apply this to several observations such as the scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields, and mass-angular momentum relation, power spectrum of density fluctuations. They all point the concordant value for the constant energy flow per mass: 0.3cm2/sec30.3 cm^2/sec^3, which may be understood as the speed of the hierarchical coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure

    Binding Energy and the Fundamental Plane of Globular Clusters

    Full text link
    A physical description of the fundamental plane of Galactic globular clusters is developed which explains all empirical trends and correlations in a large number of cluster observables and provides a small but complete set of truly independent constraints on theories of cluster formation and evolution in the Milky Way. Within the theoretical framework of single-mass, isotropic King models, it is shown that (1) 39 regular (non--core-collapsed) globulars with measured core velocity dispersions share a common V-band mass-to-light ratio of 1.45 +/- 0.10, and (2) a complete sample of 109 regular globulars reveals a very strong correlation between cluster binding energy and total luminosity, regulated by Galactocentric position: E_b \propto (L^{2.05} r_{\rm gc}^{-0.4}). The observational scatter about either of these two constraints can be attributed fully to random measurement errors, making them the defining equations of a fundamental plane for globular clusters. A third, weaker correlation, between total luminosity and the King-model concentration parameter, c, is then related to the (non-random) distribution of globulars on the plane. The equations of the FP are used to derive expressions for any cluster observable in terms of only L, r_{\rm gc}, and c. Results are obtained for generic King models and applied specifically to the globular cluster system of the Milky Way.Comment: 60 pages with 19 figures, submitted to Ap

    Toward Understanding the origin of the Fundamental Plane for Early-Type Galaxies

    Get PDF
    We present a panoramic review of several observational and theoretical aspects of the modern astrophysical research about the origin of the Fundamental Plane (FP) relation for Early-Type Galaxies (ETGs). The discussion is focused on the problem of the tilt and the tightness of the FP, and on the attempts to derive the luminosity evolution of ETGs with redshift. Finally, a number of observed features in the FP are interpreted from the standpoint of a new theoretical approach based on the two-component tensor virial theorem.Comment: 30 pages, 3 figure

    The Worst Distortions of Astrometric Instruments and Orthonormal Models for Rectangular Fields of View

    Full text link
    The non-orthogonality of algebraic polynomials of field coordinates traditionally used to model field-dependent corrections to astrometric measurements, gives rise to subtle adverse effects. In particular, certain field dependent perturbations in the observational data propagate into the adjusted coefficients with considerable magnification. We explain how the worst perturbation, resulting in the largest solution error, can be computed for a given non-orthogonal distortion model. An algebraic distortion model of full rank can be converted into a fully orthonormal model based on the Zernike polynomials for a circular field of view, or a basis of functions constructed from the original model by a variant of the Gram-Schmidt orthogonalization process for a rectangular field of view. The relative significance of orthonormal distortion terms is assessed simply by the numerical values of the corresponding coefficients. Orthonormal distortion models are easily extendable when the distribution of residuals indicate the presence of higher order terms.Comment: 1 figure; submitted in PAS

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    Evolutionary conservation and post-translational control of S-adenosyl-L-homocysteine hydrolase in land plants

    Get PDF
    Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH inArabidopsis thalianaandPhyscomitrella patensfurther suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues

    Cosmology, Oscillating Physics and Oscilllating Biology

    Get PDF
    According to recent reports there is an excess correlation and an apparent regularity in the galaxy one-dimensional polar distribution with a characteristic scale of 128 h1h^{-1} Mpc. This aparent spatial periodicity can be naturally explained by a time oscillation of the gravitational constant GG. On the other hand, periodic growth features of bivalve and coral fossiles appear to show a periodic component in the time dependence of the number of days per year. In this letter we show that a time oscillating gravitational constant with similar period and amplitude can explain such a feature.Comment: 9 pages. latex using revtex. This revised version is supposed to be free of e-mail nois

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199
    corecore