197 research outputs found

    A systematic approach to simultaneously evaluate safety, immunogenicity, and efficacy of novel tuberculosis vaccination strategies

    Get PDF
    Tuberculosis (TB) is the deadliest infectious disease worldwide. Bacille-Calmette-Guerin (BCG), the only licensed TB vaccine, affords variable protection against TB but remains the gold standard. BCG improvement is focused around three strategies: recombinant BCG strains, heterologous routes of administration, and booster vaccination. It is currently unknown whether combining these strategies is beneficial. The preclinical evaluation for new TB vaccines is heavily skewed toward immunogenicity and efficacy; however, safety and efficacy are the dominant considerations in human use. To facilitate stage gating of TB vaccines, we developed a simple empirical model to systematically rank vaccination strategies by integrating multiple measurements of safety, immunogenicity, and efficacy. We assessed 24 vaccination regimens, composed of three BCG strains and eight combinations of delivery. The model presented here highlights that mucosal booster vaccination may cause adverse outcomes and provides a much needed strategy to evaluate and rank data obtained from TB vaccine studies using different routes, strains, or animal models

    Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis

    Get PDF
    The highly successful human pathogen Mycobacterium tuberculosis has an extremely low level of genetic variation, which suggests that the entire population resulted from clonal expansion following an evolutionary bottleneck around 35,000 y ago. Here, we show that this population constitutes just the visible tip of a much broader progenitor species, whose extant representatives are human isolates of tubercle bacilli from East Africa. In these isolates, we detected incongruence among gene phylogenies as well as mosaic gene sequences, whose individual elements are retrieved in classical M. tuberculosis. Therefore, despite its apparent homogeneity, the M. tuberculosis genome appears to be a composite assembly resulting from horizontal gene transfer events predating clonal expansion. The amount of synonymous nucleotide variation in housekeeping genes suggests that tubercle bacilli were contemporaneous with early hominids in East Africa, and have thus been coevolving with their human host much longer than previously thought. These results open novel perspectives for unraveling the molecular bases of M. tuberculosis evolutionary success

    Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro–American genetic background confers optimal vaccine potential

    Get PDF
    Background: Human tuberculosis (TB) is caused by a plethora of Mycobacterium tuberculosis complex (MTBC) strains belonging to seven phylogenetic branches. Lineages 2, 3 and 4 are considered “modern” branches of the MTBC responsible for the majority of worldwide TB. Since the current BCG vaccine confers variable protection against pulmonary TB, new candidates are investigated. MTBVAC is the unique live attenuated vaccine based on M. tuberculosis in human clinical trials. Methods: MTBVAC was originally constructed by unmarked phoP and fadD26 deletions in a clinical isolate belonging to L4. Here we construct new vaccines based on isogenic gene deletions in clinical isolates of the L2 and L3 modern lineages. These three vaccine candidates were characterized at molecular level and also in animal experiments of protection and safety. Findings: Safety studies in immunocompromised mice showed that MTBVAC-L2 was less attenuated than BCG Pasteur, while the original MTBVAC was found even more attenuated than BCG and MTBVAC-L3 showed an intermediate phenotype. The three MTBVAC candidates showed similar or superior protection compared to BCG in immunocompetent mice vaccinated with each MTBVAC candidate and challenged with three representative strains of the modern lineages. Interpretation: MTBVAC vaccines, based on double phoP and fadD26 deletions, protect against TB independently of the phylogenetic linage used as template strain for their construction. Nevertheless, lineage L4 confers the best safety profile

    Impact of Mycobacterium tuberculosis RD1-locus on human primary dendritic cell immune functions

    Get PDF
    Modern strategies to develop vaccines against Mycobacterium tuberculosis (Mtb) aim to improve the current Bacillus Calmette-Guerin (BCG) vaccine or to attenuate the virulence of Mtb vaccine candidates. In the present study, the impact of wild type or mutated region of difference 1 (RD1) variants on the immunogenicity of Mtb and BCG recombinants was investigated in human primary dendritic cells (DC). A comparative analysis of transcriptome, signalling pathway activation, maturation, apoptosis, cytokine production and capacity to promote Th1 responses demonstrated that DC sense quantitative and qualitative differences in the expression of RD1-encoded factors - ESAT6 and CFP10 - within BCG or Mtb backgrounds. Expansion of IFN-Îł producing T cells was promoted by BCG::RD1-challenged DC, as compared to their BCG-infected counterparts. Although Mtb recombinants acted as a strong Th-1 promoting stimulus, even with RD1 deletion, the attenuated Mtb strain carrying a C-terminus truncated ESAT-6 elicited a robust Th1 promoting phenotype in DC. Collectively, these studies indicate a necessary but not sufficient role for the RD1 locus in promoting DC immune-regulatory functions. Additional mycobacterial factors are likely required to endow DC with a high Th1 polarizing capacity, a desirable attribute for a successful control of Mtb infection

    Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts.

    Get PDF
    Mycobacterium microti is an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical M. microti isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available M. microti genome sequences. These data also confirm that the vole and clinical M. microti isolates were all lacking the specific RD1mic region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the M. tuberculosis H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette-Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain's vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1mic region

    Control of M. tuberculosis ESAT-6 Secretion and Specific T Cell Recognition by PhoP

    Get PDF
    Analysis of mycobacterial strains that have lost their ability to cause disease is a powerful approach to identify yet unknown virulence determinants and pathways involved in tuberculosis pathogenesis. Two of the most widely used attenuated strains in the history of tuberculosis research are Mycobacterium bovis BCG (BCG) and Mycobacterium tuberculosis H37Ra (H37Ra), which both lost their virulence during in vitro serial passage. Whereas the attenuation of BCG is due mainly to loss of the ESAT-6 secretion system, ESX-1, the reason why H37Ra is attenuated remained unknown. However, here we show that a point mutation (S219L) in the predicted DNA binding region of the regulator PhoP is involved in the attenuation of H37Ra via a mechanism that impacts on the secretion of the major T cell antigen ESAT-6. Only H37Ra “knock-ins” that carried an integrated cosmid with the wild-type phoP gene from M. tuberculosis H37Rv showed changes in colony morphology, increased virulence, ESAT-6 secretion, and induction of specific T cell responses, whereas other H37Ra constructs did not. This finding established a link between the PhoP regulator and ESAT-6 secretion that opens exciting new perspectives for elucidating virulence regulation in M. tuberculosis

    Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384

    Get PDF
    Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapid-growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We, therefore, report studies performed on a library of 38 TAC-related derivatives, previously evaluated for their antitubercular activity. Several compounds, including D6, D15 and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similarly to TAC in M. tuberculosis, the three analogues act as pro-drugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections

    The MtZ Strain: Molecular Characteristics and Outbreak Investigation of the Most Successful Mycobacterium tuberculosis Strain in Aragon Using Whole-Genome Sequencing

    Get PDF
    Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population

    Natural mutations in the sensor kinase of the PhoPR two-component regulatory system modulate virulence of ancestor-like tuberculosis bacilli

    Get PDF
    The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host
    • 

    corecore