11 research outputs found

    Compression garments reduce muscle movement and activation during submaximal running

    Get PDF
    Purpose The purpose of this study was to investigate the effectiveness of sports compression tights in reducing muscle movement and activation during running. Methods A total of 27 recreationally active males were recruited across two separate studies. For study 1, 13 participants (mean ± SD = 84.1 ± 9.4 kg, 22 ± 3 yr) completed two 4-min treadmill running bouts (2 min at 12 and 15 km·h-1) under two conditions: a no-compression control (CON1) and compression (COMP). For study 2, 14 participants (77.8 ± 8.4 kg, 27 ± 5 yr) completed four 9-min treadmill running bouts (3 min at 8, 10, and 12 km·h-1) under four conditions: a no-compression control (CON2) and three different commercially available compression tights (2XU, Nike, and Under Armor). Using Vicon 3D motion capture technology, lower limb muscle displacement was investigated in both study 1 (thigh and calf) and study 2 (vastus lateralis + medialis [VAS]; lateral + medial gastrocnemius [GAS]). In addition, study 2 investigated the effects of compression on soft tissue vibrations (root-mean-square of resultant acceleration, RMS Ar), muscle activation (iEMG), and running economy (oxygen consumption, VO2) during treadmill running. Results Wearing compression during treadmill running reduced thigh and calf muscle displacement as compared with no compression (both studies), which was evident across all running speeds. Compression also reduced RMS Ar and iEMG during treadmill running, but it had no effect on running economy (study 2). Conclusion Lower limb compression garments are effective in reducing muscle displacement, soft tissue vibrations, and muscle activation associated with the impact forces experienced during running

    EFFECT OF IMMEDIATE AND DELAYED COLD WATER IMMERSION AFTER A HIGH INTENSITY EXERCISE SESSION ON SUBSEQUENT RUN PERFORMANCE

    No full text
    The purpose of the study was to determine the effects of cold water immersion (CWI) performed immediately or 3 h after a high intensity interval exercise session (HIIS) on next-day exercise performance. Eight male athletes performed three HIIS at 90%VO2max velocity followed by either a passive recovery (CON), CWI performed immediately post-exercise (CWI(0)) or CWI performed 3 h post-exercise (CWI(3)). Recovery trials were performed in a counter balanced manner. Participants then returned 24 h later and completed a muscle soreness and a totally quality recovery perception (TQRP) questionnaire, which was then followed by the Yoyo Intermittent Recovery Test [level 1] (YRT). Venous blood samples were collected pre-HIIS and pre-YRT to determine C-Reactive Protein (CRP) levels. Significantly more shuttles were performed during the YRT following CWI(0) compared to the CON trial (p=0.017, ES = 0. 8), while differences between the CWI(3) and the CON trials approached significance (p = 0.058, ES = 0.5). Performance on the YRT between the CWI(0) and CWI(3) trials were similar (p = 0.147, ES = 0. 3). Qualitative analyses demonstrated a 98% and 92% likely beneficial effect of CWI(0) and CWI(3) on next day performance, compared to CON, respectively, while CWI(0) resulted in a 79% likely benefit when compared to CWI(3). CRP values were significantly lower pre-YRT, compared to baseline, following CWI(0) (p = 0.0.36) and CWI(3) (p = 0.045), but were similar for CON (p = 0.157). Muscle soreness scores were similar between trials (p = 1.10), while TQRP scores were significantly lower for CON compared to CWI(0) (p = 0.002 ) and CWI(3) (p = 0.024). Immediate CWI resulted in superior next-day YRT performance compared to CON, while delayed (3 h) CWI was also likely to be beneficial. Qualitative analyses suggested that CWI(0) resulted in better performance than CWI(3). These results are important for athletes who do not have immediate access to CWI following exercis

    Confounding compression: The effects of posture, sizing and garment type on measured interface pressure in sports compression clothing

    No full text
    The purpose of this investigation was to measure the interface pressure exerted by lower body sports compression garments, in order to assess the effect of garment type, size and posture in athletes. Twelve national-level boxers were fitted with sports compression garments (tights and leggings), each in three different sizes (undersized, recommended size and oversized). Interface pressure was assessed across six landmarks on the lower limb (ranging from medial malleolus to upper thigh) as athletes assumed sitting, standing and supine postures. Sports compression leggings exerted a significantly higher mean pressure than sports compression tights (P < 0.001). Oversized tights applied significantly less pressure than manufacturer-recommended size or undersized tights (P < 0.001), yet no significant differences were apparent between different-sized leggings. Standing posture resulted in significantly higher mean pressure application than a seated posture for both tights and leggings (P < 0.001 and P = 0.002, respectively). Pressure was different across landmarks, with analyses revealing a pressure profile that was neither strictly graduated nor progressive in nature. The pressure applied by sports compression garments is significantly affected by garment type, size and posture assumed by the wearer

    Pressure gradient differences between medical grade and sports compression socks

    No full text
    This study aimed to investigate the differences in the interface pressure applied by sports and medical compression socks and assess the pressure gradient profile. Sixty (30 male, 30 female) national representative athletes were fitted with both medical grade and sports compression socks in a counterbalanced order. Interface pressure was assessed using a Kikuhime pressure monitor at three different landmarks on the lower leg to better understand absolute pressure application and pressure gradient profile. Medical grade compression socks exerted a small, yet significantly higher mean pressure across the three landmarks (28.8 ± 4.4 mmHg) than sports compression socks (26.3 ± 4.0 mmHg, p < 0.001, d = 0.57). Both garment types exhibited progressively graduated pressure profiles, where pressure was highest at the proximal end of the limb and lowest at the distal end. These findings highlight the possible differences between types of compression garments and their progressive, rather than graduated, pressure gradient

    Effect of compression socks worn between repeated maximal running bouts

    No full text
    Purpose: To determine the effect of wearing compression socks between repeated running bouts on perceptual, physiological, and performance-based parameters. Methods: Twelve well-trained male runners (mean ± SD 5-km time 19:24 ± 1:19 [min:s]) recorded their perceptions of the efficacy of compression socks for recovery before completion of 2 experimental sessions. Each session consisted of two 5-km running time trials (TT1 and TT2) on a treadmill, with a 1-h recovery period between. In a randomized crossover design, 1 session required participants to wear compression socks during the recovery period, and no compression socks were worn between TTs in the other session (control). Results: Running performance between TT1 and TT2 for runners wearing compression socks was similar between TTs (mean Δ 5.3 ± 20.7 s, d = 0.07, P = .20), whereas for control runners, performance significantly decreased in the second TT (mean Δ 15.9 ± 13.3 s, d = 0.19, P < .01). When grouped by perception of efficacy for compression socks, participants with strong beliefs (n = 7) experienced improved subsequent running performance with compression socks (mean Δ –3.6 ± 19.2 s, d = 0.05, P = .32) compared with those with neutral or negative perceptions (n = 5; mean Δ 17.9 ± 17.0 s, d = 0.19, P = .04). Cross-sectional area of the calf and muscle soreness were significantly reduced during the recovery period with the use of compression socks (P < .01), whereas ratings of fatigue showed no difference between conditions. Conclusions: Wearing compression socks between repeated running bouts can aid recovery and subsequent performance. Furthermore, subsequent exercise performance may be even further enhanced when athletes believe in the efficacy of compression socks to assist in recovery between exercise bouts

    Pressure gradient differences between medical grade and sports compression socks

    No full text
    This study aimed to investigate the differences in the interface pressure applied by sports and medical compression socks and assess the pressure gradient profile. Sixty (30 male, 30 female) national representative athletes were fitted with both medical grade and sports compression socks in a counterbalanced order. Interface pressure was assessed using a Kikuhime pressure monitor at three different landmarks on the lower leg to better understand absolute pressure application and pressure gradient profile. Medical grade compression socks exerted a small, yet significantly higher mean pressure across the three landmarks (28.8 ± 4.4 mmHg) than sports compression socks (26.3 ± 4.0 mmHg, p < 0.001, d = 0.57). Both garment types exhibited progressively graduated pressure profiles, where pressure was highest at the proximal end of the limb and lowest at the distal end. These findings highlight the possible differences between types of compression garments and their progressive, rather than graduated, pressure gradient

    Differences in Mechanisms of Failure, Intraoperative Findings, and Surgical Characteristics Between Single- and Multiple-Revision ACL Reconstructions

    No full text
    BackgroundThe factors that lead to patients failing multiple anterior cruciate ligament (ACL) reconstructions are not well understood.HypothesisMultiple-revision ACL reconstruction will have different characteristics than first-time revision in terms of previous and current graft selection, mode of failure, chondral/meniscal injuries, and surgical charactieristics.Study designCase-control study; Level of evidence, 3.MethodsA prospective multicenter ACL revision database was utilized for the time period from March 2006 to June 2011. Patients were divided into those who underwent a single-revision ACL reconstruction and those who underwent multiple-revision ACL reconstructions. The primary outcome variable was Marx activity level. Primary data analyses between the groups included a comparison of graft type, perceived mechanism of failure, associated injury (meniscus, ligament, and cartilage), reconstruction type, and tunnel position. Data were compared by analysis of variance with a post hoc Tukey test.ResultsA total of 1200 patients (58% men; median age, 26 years) were enrolled, with 1049 (87%) patients having a primary revision and 151 (13%) patients having a second or subsequent revision. Marx activity levels were significantly higher (9.77) in the primary-revision group than in those patients with multiple revisions (6.74). The most common cause of reruptures was a traumatic, noncontact ACL graft injury in 55% of primary-revision patients; 25% of patients had a nontraumatic, gradual-onset recurrent injury, and 11% had a traumatic, contact injury. In the multiple-revision group, a nontraumatic, gradual-onset injury was the most common cause of recurrence (47%), followed by traumatic noncontact (35%) and nontraumatic sudden onset (11%) (P &lt; .01 between groups). Chondral injuries in the medial compartment were significantly more common in the multiple-revision group than in the single-revision group, as were chondral injuries in the patellofemoral compartment.ConclusionPatients with multiple-revision ACL reconstructions had lower activity levels, were more likely to have chondral injuries in the medial and patellofemoral compartments, and had a high rate of a nontraumatic, recurrent injury of their graft
    corecore