591 research outputs found

    Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    Full text link
    We characterize the stellar population of the poorly explored young stellar cluster NGC 3293 at the northwestern periphery of the Carina Nebula Complex, in order to evaluate the cluster age and the mass function, and to test claims of an abnormal IMF and a deficit of M <= 2.5 M_sun stars. We performed a deep (70 ksec) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. We identify counterparts for 74% of the X-ray sources in deep near-infrared images. Our data clearly show that NGC 3293 hosts a large population of solar-mass stars, refuting claims of a lack of M <= 2.5 M_sun stars. The analysis of the color magnitude diagram suggests an age of ~8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the 1-2 M_sun range versus the M >= 5 M_sun stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and 20% of the later B-type stars are detected as X-ray sources. Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex. The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex.Comment: accepted for Astronomy & Astrophysic

    Parsec-scale X-ray Flows in High-mass Star-forming Regions

    Full text link
    The Chandra X-ray Observatory is providing remarkable new views of massive star-forming regions, revealing all stages in the life cycle of high-mass stars and their effects on their surroundings. We present a Chandra tour of several high-mass star-forming regions, highlighting physical processes that characterize the life of a cluster of high-mass stars, from deeply-embedded cores too young to have established an HII region to superbubbles so large that they shape our views of galaxies. Along the way we see that X-ray observations reveal hundreds of stellar sources powering great HII region complexes, suffused by both hard and soft diffuse X-ray structures caused by fast O-star winds thermalized in wind-wind collisions or by termination shocks against the surrounding media. Finally, we examine the effects of the deaths of high-mass stars that remained close to their birthplaces, exploding as supernovae within the superbubbles that these clusters created. We present new X-ray results on W51 IRS2E and 30 Doradus and we introduce new data on Trumpler 14 in Carina and the W3 HII region complexes W3 Main and W3(OH).Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227,"Massive Star Birth - A Crossroads of Astrophysics," eds. R. Cesaroni, E. Churchwell, M. Felli, and C.M. Walmsle

    Mitigating Charge Transfer Inefficiency in the Chandra X-ray Observatory's ACIS Instrument

    Get PDF
    The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of de-trapping (charge trailing), shielding within an event (charge in the leading pixels of the 3X3 event island protect the rest of the island by filling traps), and non-uniform spatial distribution of traps. This technique cannot fully recover the degraded energy resolution, but it reduces the position dependence of gain and grade distributions. By correcting the grade distributions as well as the event amplitudes, we can improve the instrument's quantum efficiency. We outline our model for CTI correction and discuss how the corrector can improve astrophysical results derived from ACIS data.Comment: Accepted by ApJ Letters; see http://www.astro.psu.edu/users/townsley/cti

    Methods for Estimating Fluxes and Absorptions of Faint X-ray Sources

    Full text link
    X-ray sources with very few counts can be identified with low-noise X-ray detectors such as ACIS onboard the Chandra X-ray Observatory. These sources are often too faint for parametric spectral modeling using well-established methods such as fitting with XSPEC. We discuss the estimation of apparent and intrinsic broad-band X-ray fluxes and soft X-ray absorption from gas along the line of sight to these sources, using nonparametric methods. Apparent flux is estimated from the ratio of the source count rate to the instrumental effective area averaged over the chosen band. Absorption, intrinsic flux, and errors on these quantities are estimated from comparison of source photometric quantities with those of high S/N spectra that were simulated using spectral models characteristic of the class of astrophysical sources under study. The concept of this method is similar to the long-standing use of color-magnitude diagrams in optical and infrared astronomy, with X-ray median energy replacing color index and X-ray source counts replacing magnitude. Our nonparametric method is tested against the apparent spectra of 2000 faint sources in the Chandra observation of the rich young stellar cluster in the M17 HII region. We show that the intrinsic X-ray properties can be determined with little bias and reasonable accuracy using these observable photometric quantities without employing often uncertain and time-consuming methods of non-linear parametric spectral modeling. Our method is calibrated for thermal spectra characteristic of stars in young stellar clusters, but recalibration should be possible for some other classes of faint X-ray sources such as extragalactic AGN.Comment: Accepted for publication in The Astrophysical Journal. 39 pages, 15 figure

    A Naive Bayes Source Classifier for X-ray Sources

    Full text link
    The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey of a nearby starburst region over >1 square degree in extent. Thousands of faint X-ray sources are found, many concentrated into rich young stellar clusters. However, significant contamination from unrelated Galactic and extragalactic sources is present in the X-ray catalog. We describe the use of a naive Bayes classifier to assign membership probabilities to individual sources, based on source location, X-ray properties, and visual/infrared properties. For the particular membership decision rule adopted, 75% of CCCP sources are classified as members, 11% are classified as contaminants, and 14% remain unclassified. The resulting sample of stars likely to be Carina members is used in several other studies, which appear in a Special Issue of the ApJS devoted to the CCCP.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 19 pages, 7 figure

    Chandra observations of SN 1987A: the soft X-ray light curve revisited

    Get PDF
    We report on the present stage of SN 1987A as observed by the Chandra X-ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by ~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure
    • …
    corecore