591 research outputs found
Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex
We characterize the stellar population of the poorly explored young stellar
cluster NGC 3293 at the northwestern periphery of the Carina Nebula Complex, in
order to evaluate the cluster age and the mass function, and to test claims of
an abnormal IMF and a deficit of M <= 2.5 M_sun stars. We performed a deep (70
ksec) X-ray observation of NGC 3293 with Chandra and detected 1026 individual
X-ray point sources. We identify counterparts for 74% of the X-ray sources in
deep near-infrared images. Our data clearly show that NGC 3293 hosts a large
population of solar-mass stars, refuting claims of a lack of M <= 2.5 M_sun
stars. The analysis of the color magnitude diagram suggests an age of ~8-10 Myr
for the low-mass population of the cluster. There are at least 511 X-ray
detected stars with color magnitude positions that are consistent with young
stellar members within 7 arcmin of the cluster center. The number ratio of
X-ray detected stars in the 1-2 M_sun range versus the M >= 5 M_sun stars
(known from optical spectroscopy) is consistent with the expectation from a
normal field initial mass function. Most of the early B-type stars and 20% of
the later B-type stars are detected as X-ray sources. Our data shows that NGC
3293 is one of the most populous stellar clusters in the entire Carina Nebula
Complex. The cluster probably harbored several O-type stars, whose supernova
explosions may have had an important impact on the early evolution of the
Carina Nebula Complex.Comment: accepted for Astronomy & Astrophysic
Parsec-scale X-ray Flows in High-mass Star-forming Regions
The Chandra X-ray Observatory is providing remarkable new views of massive
star-forming regions, revealing all stages in the life cycle of high-mass stars
and their effects on their surroundings. We present a Chandra tour of several
high-mass star-forming regions, highlighting physical processes that
characterize the life of a cluster of high-mass stars, from deeply-embedded
cores too young to have established an HII region to superbubbles so large that
they shape our views of galaxies. Along the way we see that X-ray observations
reveal hundreds of stellar sources powering great HII region complexes,
suffused by both hard and soft diffuse X-ray structures caused by fast O-star
winds thermalized in wind-wind collisions or by termination shocks against the
surrounding media. Finally, we examine the effects of the deaths of high-mass
stars that remained close to their birthplaces, exploding as supernovae within
the superbubbles that these clusters created. We present new X-ray results on
W51 IRS2E and 30 Doradus and we introduce new data on Trumpler 14 in Carina and
the W3 HII region complexes W3 Main and W3(OH).Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium
227,"Massive Star Birth - A Crossroads of Astrophysics," eds. R. Cesaroni, E.
Churchwell, M. Felli, and C.M. Walmsle
Mitigating Charge Transfer Inefficiency in the Chandra X-ray Observatory's ACIS Instrument
The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were
damaged in the extreme environment of the Earth's radiation belts, resulting in
enhanced charge transfer inefficiency (CTI). This produces a row dependence in
gain, event grade, and energy resolution. We model the CTI as a function of
input photon energy, including the effects of de-trapping (charge trailing),
shielding within an event (charge in the leading pixels of the 3X3 event island
protect the rest of the island by filling traps), and non-uniform spatial
distribution of traps. This technique cannot fully recover the degraded energy
resolution, but it reduces the position dependence of gain and grade
distributions. By correcting the grade distributions as well as the event
amplitudes, we can improve the instrument's quantum efficiency. We outline our
model for CTI correction and discuss how the corrector can improve
astrophysical results derived from ACIS data.Comment: Accepted by ApJ Letters; see
http://www.astro.psu.edu/users/townsley/cti
Methods for Estimating Fluxes and Absorptions of Faint X-ray Sources
X-ray sources with very few counts can be identified with low-noise X-ray
detectors such as ACIS onboard the Chandra X-ray Observatory. These sources are
often too faint for parametric spectral modeling using well-established methods
such as fitting with XSPEC. We discuss the estimation of apparent and intrinsic
broad-band X-ray fluxes and soft X-ray absorption from gas along the line of
sight to these sources, using nonparametric methods. Apparent flux is estimated
from the ratio of the source count rate to the instrumental effective area
averaged over the chosen band. Absorption, intrinsic flux, and errors on these
quantities are estimated from comparison of source photometric quantities with
those of high S/N spectra that were simulated using spectral models
characteristic of the class of astrophysical sources under study. The concept
of this method is similar to the long-standing use of color-magnitude diagrams
in optical and infrared astronomy, with X-ray median energy replacing color
index and X-ray source counts replacing magnitude. Our nonparametric method is
tested against the apparent spectra of 2000 faint sources in the Chandra
observation of the rich young stellar cluster in the M17 HII region. We show
that the intrinsic X-ray properties can be determined with little bias and
reasonable accuracy using these observable photometric quantities without
employing often uncertain and time-consuming methods of non-linear parametric
spectral modeling. Our method is calibrated for thermal spectra characteristic
of stars in young stellar clusters, but recalibration should be possible for
some other classes of faint X-ray sources such as extragalactic AGN.Comment: Accepted for publication in The Astrophysical Journal. 39 pages, 15
figure
A Naive Bayes Source Classifier for X-ray Sources
The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey
of a nearby starburst region over >1 square degree in extent. Thousands of
faint X-ray sources are found, many concentrated into rich young stellar
clusters. However, significant contamination from unrelated Galactic and
extragalactic sources is present in the X-ray catalog. We describe the use of a
naive Bayes classifier to assign membership probabilities to individual
sources, based on source location, X-ray properties, and visual/infrared
properties. For the particular membership decision rule adopted, 75% of CCCP
sources are classified as members, 11% are classified as contaminants, and 14%
remain unclassified. The resulting sample of stars likely to be Carina members
is used in several other studies, which appear in a Special Issue of the ApJS
devoted to the CCCP.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex
Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special
Issue papers are available at
http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at
least. 19 pages, 7 figure
Chandra observations of SN 1987A: the soft X-ray light curve revisited
We report on the present stage of SN 1987A as observed by the Chandra X-ray
Observatory. We reanalyze published Chandra observations and add three more
epochs of Chandra data to get a consistent picture of the evolution of the
X-ray fluxes in several energy bands. We discuss the implications of several
calibration issues for Chandra data. Using the most recent Chandra calibration
files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by
~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our
previous result that the 0.5-2.0 keV light curve showed a sudden flattening in
2009. Based on our new analysis, we conclude that the forward shock is still in
full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure
- …