8 research outputs found

    Associations of HDL metrics with coronary artery calcium score and density among women traversing menopause

    Get PDF
    The cardioprotective association of high-density lipoprotein cholesterol (HDL-C) may vary by menopause stage or estradiol level. We tested whether associations of comprehensive HDL metrics (HDL subclasses, phospholipid and triglyceride content, and HDL cholesterol efflux capacity [HDL-CEC]) with coronary artery calcium (CAC) score and density vary by menopause stage or estradiol level in women transitioning through menopause. Participants (N = 294; mean age [SD]: 51.3 [2.9]) had data on HDL metrics and CAC measures at one or two time points during the menopause transition. Generalized estimating equations were used for analyses. Effect modifications by menopause stage or estradiol level were tested in multivariable models. In adjusted models, menopause stage modified the associations of specific HDL metrics with CAC measures. Higher small HDL particles (HDL-P) concentrations (p-interaction = 0.008) and smaller HDL size (p-interaction = 0.02) were associated with greater odds of CAC presence in late perimenopause than in pre/early perimenopause stage. Women in the highest estradiol tertile, but not the lower tertiles, showed a protective association of small HDL-P with CAC presence (p-interaction = 0.007). Lower large HDL-P concentrations (p-interaction = 0.03) and smaller HDL size (p-interaction = 0.03) were associated with lower CAC density in late perimenopause than in postmenopause stage. Associations of HDL phospholipid and triglyceride content and HDL-CEC with CAC measures did not vary by menopause stage or estradiol level. We concluded that HDL subclasses may impact the likelihood of CAC presence and the stability of coronary plaque differently over the menopause transition. Endogenous estradiol levels may contribute to this observation

    HDL (High-Density Lipoprotein) Subclasses, Lipid Content, and Function Trajectories Across the Menopause Transition: SWAN-HDL Study

    No full text
    OBJECTIVE: The cardioprotective capacity of HDL (high-density lipoprotein) cholesterol postmenopause has been challenged. HDL subclasses, lipid contents, and function might be better predictors of cardiovascular risk than HDL cholesterol. Changes in these measures have not been characterized over the menopause transition (MT) with respect to timing relative to the final menstrual period. Approach and Results: Four hundred seventy-one women with HDL particle (HDL-P) subclasses (nuclear magnetic resonance spectroscopy total, large, medium, and small HDL-P and HDL size), HDL lipid content (HDL phospholipids and triglycerides), and HDL function (cholesterol efflux capacity [HDL-CEC]) measured for a maximum of 5 time points across the MT were included. HDL cholesterol and total HDL-P increased across the MT. Within the 1 to 2 years bracketing the final menstrual period, large HDL-P and HDL size declined while small HDL-P and HDL-triglyceride increased. Although overall HDL-CEC increased across the MT, HDL-CEC per HDL-P declined. Higher concentrations of total, large, and medium HDL-P and greater HDL size were associated with greater HDL-CEC while of small HDL-P were associated with lower HDL-CEC. Associations of large HDL-P and HDL size with HDL-CEC varied significantly across the MT such that higher large HDL-P concentrations and greater HDL size were associated with lower HDL-CEC within the 1 to 2 years around the final menstrual period. CONCLUSIONS: Although HDL cholesterol increased over the MT, HDL subclasses and lipid content showed adverse changes. While overall HDL-CEC increased, HDL-CEC per HDL-P declined, consistent with reduced function per particle. Large HDL-P may become less efficient in promoting HDL-CEC during the MT

    Part 1. Bibliographies and Other Research and Reference Guides, Including Dictionaries, Encyclopedias, Grammars and Phrase Books

    No full text
    corecore