12 research outputs found

    Reply to comment by J.-P. Renaud et al. on “An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow”

    Get PDF
    This is the published version. Copyright Wiley [Commercial Publisher

    An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of “pre-event” versus “event” contributions on the one hand and “old” versus “new” water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak

    Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study

    Importance of a sound hydrologic foundation for assessing the future of the High Plains Aquifer in Kansas

    Get PDF
    This is the published version. Copyright National Academy of SciencesSteward et al. (1) assess the hydrologic and agricultural future of the High Plains Aquifer. We have many concerns about hydrologic aspects of their study and describe the most significant here. The authors state “…the lines of recharge plus storage in Fig. 1C very closely approximate the recent data points of metered groundwater pumping….” That is not correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated groundwater use (solid line) for the SW region. There is a systematic deviation (authors’ calculated use is increasing, whereas reported metered pumping data are decreasing), which persists even when uncertain pre-1990 pumping data are neglected. The authors’ groundwater use is also markedly inconsistent with common experiences in western Kansas (2). The 2020–2025 (SW) and 2025–2030 (NW) peaks in the authors’ groundwater use are simply a product of their logistic function representation (maximum use at normalized thickness of 0.5) and are in dramatic contrast to recorded pumping trends. Given that calculated groundwater use is input into the agricultural models, we question all of the agricultural projections. The authors provide no objective basis for accepting the logistic function as an accurate tool for projecting water level declines. The comparisons in their table S1 do little to substantiate the use of the function given that the authors (i) adjust two parameters per well; (ii) adjust parameters at each well independently of the other 1,600 wells; and (iii) in aggregate, only assess the first 30% of depletion. A number of alternative functions could be found that would produce similar agreement with existing data but markedly different future projections. We note the circularity of including extrapolated 2060 values in the dataset used to develop logistic curves that are then used to make future projections. The authors state “…and measurement points were added at 1930 and 2060 from a linear extrapolation of observations while keeping these points within the saturated aquifer.” We are concerned about the sensitivity of future projections to inclusion of 1930 and 2060 “measurements” and to the process (unexplained) for “keeping these points within the saturated aquifer.” The authors state that “We computed recent recharge rates to preserve conservation of mass….” That cannot be correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated change in storage plus recharge (solid line) for the SW region in their figure 1C; a conservation of mass calculation would produce a line through the center of mass of the reported 1981–2009 data. The calculated recharge values appear to have been adjusted in an unexplained manner. Given that, we also question the significance of the match obtained for the groundwater-supported corn plot in their figure 3A. The comparisons in their table S3 do little to substantiate the authors’ recharge estimates because of the above concerns and the lack of consistency with more recent process-based modeling investigations (3, 4). We conclude that this is an interesting, but highly flawed, mathematical exercise that has little bearing on future conditions in the High Plains Aquifer in western Kansas

    Implications of Projected Climate Change for Groundwater Recharge in the Western United States

    No full text
    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/ location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 degrees longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems
    corecore