2,276 research outputs found

    The Black Struggle Continues

    Get PDF

    Robustness of adiabatic quantum computation

    Get PDF
    We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.Comment: 11 pages, 5 figures, REVTe

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    The InterHourly-Variability (IHV) Index of Geomagnetic Activity and its Use in Deriving the Long-term Variation of Solar Wind Speed

    Full text link
    We describe the derivation of the InterHourly Variability (IHV) index of geomagnetic activity. The IHV-index for a geomagnetic element is mechanically derived from hourly values as the sum of the unsigned differences between adjacent hours over a seven-hour interval centered on local midnight. The index is derived separately for stations in both hemispheres within six longitude sectors using only local night hours. It is intended as a long-term index. Available data allows derivation of the index back well into the 19th century. On a time scale of a 27-day Bartels rotation, IHV averages for stations with corrected geomagnetic latitude less than 55 degrees are strongly correlated with midlatitude range indices. Assuming a constant calibration of the aa-index we find that observed yearly values of aa before the year 1957 are 2.9 nT too small compared to values calculated from IHV using the regression constants based on 1980-2004. We interpret this discrepancy as an indication that the calibration of the aa index is in error before 1957. There is no such problem with the ap index. Rotation averages of IHV are also strongly correlated with solar wind parameters (BV^2). On a time scale of a year combining the IHV-index and the recently-developed Inter-Diurnal Variability (IDV) index (giving B) allows determination of solar wind speed, V, from 1890-present. Over the ~120-year series, the yearly mean solar wind speed varied from a low of 303 km/s in 1902 to a high value of 545 km/s in 2003. The calculated yearly values of the product BV using B and V separately derived from IDV and IHV agree quantitatively with (completely independent) BV derived from the amplitude of the diurnal variation of the H component in the polar caps since 1926 and sporadically beyond

    Exotic massive hadrons and ultra-high energy cosmic rays

    Full text link
    We investigate the proposal that primary cosmic rays of energy above the Greisen-Zatsepin-Kuzmin cutoff are exotic massive strongly interacting particles (uhecrons). We study the properties of air showers produced by uhecrons and find that masses in excess of about 50 GeV are inconsistent with the highest energy event observed. We also estimate that with sufficient statistics a uhecron of mass as low as 10 GeV may be distinguished from a proton.Comment: 27 pages, 15 figures - fig5b was replace

    Genetic Association Studies of Copy-Number Variation: Should Assignment of Copy Number States Precede Testing?

    Get PDF
    Recently, structural variation in the genome has been implicated in many complex diseases. Using genomewide single nucleotide polymorphism (SNP) arrays, researchers are able to investigate the impact not only of SNP variation, but also of copy-number variants (CNVs) on the phenotype. The most common analytic approach involves estimating, at the level of the individual genome, the underlying number of copies present at each location. Once this is completed, tests are performed to determine the association between copy number state and phenotype. An alternative approach is to carry out association testing first, between phenotype and raw intensities from the SNP array at the level of the individual marker, and then aggregate neighboring test results to identify CNVs associated with the phenotype. Here, we explore the strengths and weaknesses of these two approaches using both simulations and real data from a pharmacogenomic study of the chemotherapeutic agent gemcitabine. Our results indicate that pooled marker-level testing is capable of offering a dramatic increase in power (-fold) over CNV-level testing, particularly for small CNVs. However, CNV-level testing is superior when CNVs are large and rare; understanding these tradeoffs is an important consideration in conducting association studies of structural variation

    The Zwicky Transient Facility: Science Objectives

    Get PDF
    The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding (“partnership”) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r∼20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects. © 2019. The Astronomical Society of the Pacific
    corecore