10,491 research outputs found

    A randomized trial in a massive online open course shows people don't know what a statistically significant relationship looks like, but they can learn

    Full text link
    Scatterplots are the most common way for statisticians, scientists, and the public to visually detect relationships between measured variables. At the same time, and despite widely publicized controversy, P-values remain the most commonly used measure to statistically justify relationships identified between variables. Here we measure the ability to detect statistically significant relationships from scatterplots in a randomized trial of 2,039 students in a statistics massive open online course (MOOC). Each subject was shown a random set of scatterplots and asked to visually determine if the underlying relationships were statistically significant at the P < 0.05 level. Subjects correctly classified only 47.4% (95% CI: 45.1%-49.7%) of statistically significant relationships, and 74.6% (95% CI: 72.5%-76.6%) of non-significant relationships. Adding visual aids such as a best fit line or scatterplot smooth increased the probability a relationship was called significant, regardless of whether the relationship was actually significant. Classification of statistically significant relationships improved on repeat attempts of the survey, although classification of non-significant relationships did not. Our results suggest: (1) that evidence-based data analysis can be used to identify weaknesses in theoretical procedures in the hands of average users, (2) data analysts can be trained to improve detection of statistically significant results with practice, but (3) data analysts have incorrect intuition about what statistically significant relationships look like, particularly for small effects. We have built a web tool for people to compare scatterplots with their corresponding p-values which is available here: http://glimmer.rstudio.com/afisher/EDA/.Comment: 7 pages, including 2 figures and 1 tabl

    Decoherence-free quantum information in the presence of dynamical evolution

    Full text link
    We analyze decoherence-free (DF) quantum information in the presence of an arbitrary non-nearest-neighbor bath-induced system Hamiltonian using a Markovian master equation. We show that the most appropriate encoding for N qubits is probably contained within the ~(2/9) N excitation subspace. We give a timescale over which one would expect to apply other methods to correct for the system Hamiltonian. In order to remain applicable to experiment, we then focus on small systems, and present examples of DF quantum information for three and four qubits. We give an encoding for four qubits that, while quantum information remains in the two-excitation subspace, protects against an arbitrary bath-induced system Hamiltonian. Although our results are general to any system of qubits that satisfies our assumptions, throughout the paper we use dipole-coupled qubits as an example physical system.Comment: 8 pages, 4 figure

    A study of cosmic ray protons at ground level

    Get PDF
    The momentum spectra of cosmic ray protons and pions up to an energy of I50 GeV have been measured at Durham, 198 feet above sea-level. Assuming a particular model for the interaction of high energy nucleons, a new estimate has been made of the primary cosmic ray nucleon spectrum. This may be represented in the energy range 10(^10) to 3 x 10(^13) eV nucleon by the expression:-I(>E) = 0.87(^+0.52) (_-0.30) E(^-1.58) cm(^-2) sec(^-1) Sterad(^-1) where E is in units of GeV. It has been shown that a model in which the mean value of the elasticity of nucleon=air nucleus collisions is not a function of ' incident energy describes the experimental results accurately. The value found for the fraction of this energy retained by the incident nucleon is 53%. The effect of large fluctuations in elasticity from collision to collision has been investigated and found to be negligible. The result of taking fluctuations into account is to give a mean value of elasticity ~3% lower than the value obtained assuming the elasticity not to fluctuate

    Changes in Water Chemistry and Biological Communities Associated with Metal Mining in Streams in the North Cascades

    Get PDF
    Hard rock and placer mining have been occurring throughout the mountains in the northern portion of Washington State since the late-1800s. As a result, aquatic ecosystems in this region are susceptible to the physical, chemical and biological changes that result from mining activities. These alterations, which include changes in water chemistry, habitat modifications, and reduction or contamination of food sources, can adversely impact aquatic communities of periphyton, benthic macroinvertebrates and fish. To evaluate changes in water chemistry and biological communities in two regions with extensive mining histories, the Ruby Creek watershed and Upper Skagit River watershed, I analyzed metals in grab samples of surface water, on Stabilized Liquid Membrane Devices (SLMDs) which passively sample metals in surface waters over time, and in periphyton. Metals were present in the water and benthos, and site-specific and temporal differences in the kinds and quantities of metals were linked to locations of hard rock and placer mining activities. Metal concentrations in surface waters differed between sites upstream and downstream of mining depending on different times when mining was or was not occurring. Metal concentrations in surface waters at some sites in the Ruby Creek watershed were high enough to be capable of adversely affecting aquatic organisms over time. Metals that were present in streams were not always detected in grab samples, but their presence was confirmed by SLMDs and periphyton. Clustering analyses of both SLMDs and periphyton each distinguished two different groups of samples, samples collected downstream of placer mining (SLMDs) and samples collected downstream of hard rock mining (periphyton). The accumulation of metals in periphyton indicated these communities could be a concentrated source of toxic metals to primary consumers, such as small aquatic insects, and may pass to other aquatic organisms at higher trophic levels through dietary exposures

    Super- and subradiant emission of two-level systems in the near-Dicke limit

    Full text link
    We analyze the stability of super- and subradiant states in a system of identical two-level atoms in the near-Dicke limit, i.e., when the atoms are very close to each other compared to the wavelength of resonant light. The dynamics of the system are studied using a renormalized master equation, both with multipolar and minimal-coupling interaction schemes. We show that both models lead to the same result and, in contrast to unrenormalized models, predict that the relative orientation of the (co-aligned) dipoles is unimportant in the Dicke limit. Our master equation is of relevance to any system of dipole-coupled two-level atoms, and gives bounds on the strength of the dipole-dipole interaction for closely spaced atoms. Exact calculations for small atom systems in the near-Dicke limit show the increased emission times resulting from the evolution generated by the strong dipole-dipole interaction. However, for large numbers of atoms in the near-Dicke limit, it is shown that as the number of atoms increases, the effect of the dipole-dipole interaction on collective emission is reduced.Comment: 14 pages, 6 figures, published versio

    Decoherence-free quantum-information processing using dipole-coupled qubits

    Get PDF
    We propose a quantum-information processor that consists of decoherence-free logical qubits encoded into arrays of dipole-coupled qubits. High-fidelity single-qubit operations are performed deterministically within a decoherence-free subsystem without leakage via global addressing of bichromatic laser fields. Two-qubit operations are realized locally with four physical qubits, and between separated logical qubits using linear optics. We show how to prepare cluster states using this method. We include all non-nearest-neighbor effects in our calculations, and we assume the qubits are not located in the Dicke limit. Although our proposal is general to any system of dipole-coupled qubits, throughout the paper we use nitrogen-vacancy (NV) centers in diamond as an experimental context for our theoretical results.Comment: 7 pages, 5 figure

    Rape and Posttraumatic Stress Disorder (PTSD): Examining the Mediating Role of Explicit Sex-Power Beliefs for Men Versus Women

    Get PDF
    Many rape survivors exhibit symptoms of post-traumatic stress disorder (PTSD), and recent literature suggests survivors\u27 beliefs about sex and control may affect PTSD symptoms. The present study examined beliefs about sex and power as potential mediators of the relationship between rape and PTSD symptoms for men versus women. Participants (N = 782) reported lifetime history of rape, current PTSD symptoms, and beliefs about sex and power. Women reported higher levels of lifetime history of rape than men (19.7% for women; 9.7% for men). While rape history predicted PTSD symptoms for both genders, beliefs about sex and power were shown to be a significant partial mediator of this relationship for men, but not for women. Results extend the literature on rape and PTSD by suggesting that survivors\u27 beliefs about sex and power are connected and can affect their PTSD symptoms. Additionally, results illustrate how sexual violence against men may reaffirm male gender roles that entail power and aggression, and ultimately affect trauma recovery

    Estimating HIV Medication Adherence and Persistence: Two Instruments for Clinical and Research Use

    Get PDF
    Antiretroviral therapy (ART) requires lifelong daily oral therapy. While patient characteristics associated with suboptimal ART adherence and persistence have been described in cohorts of HIV-infected persons, these factors are poor predictors of individual medication taking behaviors. We aimed to create and test instruments for the estimation of future ART adherence and persistence for clinical and research applications. Following formative work, a battery of 148 items broadly related to HIV infection and treatment was developed and administered to 181 HIV-infected patients. ART adherence and persistence were assessed using electronic monitoring for 3 months. Perceived confidence in medication taking and self-reported barriers to adherence were strongest in predicting non-adherence over time. Barriers to adherence (e.g., affordability, scheduling) were the strongest predictors of non-adherence, as well as 3- and 7-day non-persistence. A ten-item battery for prediction of these outcomes (www.med.unc.edu/ncaidstraining/adherence/for-providers) and a 30-item battery reflective of underlying psychological constructs can help identify and study individuals at risk for suboptimal ART adherence and persistence

    Effects of shear on eggs and larvae of striped bass, morone saxatilis, and white perch, M. americana

    Get PDF
    Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field
    • …
    corecore