12,417 research outputs found
NOSL experiment support
An optical lightning detector was constructed and flown, along with Vinton cameras and a Fairchild Line Scan Spectrometer, on a U-2 during the summer of 1979. The U-2 lightning data was obtained in daylight, and was supplemented with ground truth taken at Langmuir Laboratory. Simulations were prepared as required to establish experiment operating procedures and science training for the astronauts who would operate the Night/Day Optical Survey of Thunderstorm Lightning (NOSL) equipment during the STS-2 NOSL experiment on the Space Shuttle. Data was analyzed and papers were prepared for publication
One Hour of Chemical Demonstrations
This article describes a diverse set of chemistry demonstrations especially selected to encourage student interaction and to be easily transported. The demonstrations may be presented at a level that can be tailored to any audience– from very young children to high school students planning careers in science. An ideal environment is a small classroom with 20-30 students where everyone can take part in the discussion. Once the chemicals are prepared, the collection of demonstrations takes about ten minutes to set-up, and one hour (or less) to perform. Very little is needed at the visiting site, no more than a table and a pitcher of water. A single electrical outlet is useful, but not essential. In Table 2 th
Thunderstorm observations from Space Shuttle
Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more
Lightning observations from the Space Shuttle
Motion pictures were taken at night from the space shuttle that show lightning discharges spreading horizontally at speeds of .00001 m/sec for distances over 60 km. Tape recordings were made of the accompanying optical pulses detected with a photocell optical system. The observations show that lightning is often a mesoscale phenomenon that conveys large amounts of electric charge and energy derived from an extensive cloud system into a cloud-to-ground discharge. Several video tape recordings of lightning discharges were obtained on shuttle flights since the termination of the NOSL program. The size and location of the lightning illuminated cloud images is now being analyzed, and comparisons are made with meteorological data concerning the cloud system obtained from the McIDAS
A Comparison of Risk Exposure in Aquaculture and Agricultural Businesses
Agriculture and aquaculture have common features associated with their biological nature affecting risk exposure of the businesses. The aim of this paper is to compare risk exposure in salmon farming and agricultural enterprises in Norway by using an implicit error component model to examine the risk structure of yields, prices and economic returns at the farm level. Results indicate a higher farm-level year-to-year variability in yields, prices and economic returns in salmon farming than in agricultural enterprises. The variability in livestock enterprises was generally lower than for crop enterprises. Return on assets was highest in salmon farming with an average annual return of 9.2%. All of the agricultural farm types exhibited a negative average return on assets on average. Stochastic dominance tests of the distribution of economic returns from aquaculture and agricultural farm types showed salmon farming to be the most risk efficient alternative and salmon farming was most attractive from an investor’s perspective.Risk analysis, variability, Norway, Risk and Uncertainty,
The Role of Cold Flows in the Assembly of Galaxy Disks
We use high resolution cosmological hydrodynamical simulations to demonstrate
that cold flow gas accretion, particularly along filaments, modifies the
standard picture of gas accretion and cooling onto galaxy disks. In the
standard picture, all gas is initially heated to the virial temperature of the
galaxy as it enters the virial radius. Low mass galaxies are instead dominated
by accretion of gas that stays well below the virial temperature, and even when
a hot halo is able to develop in more massive galaxies there exist dense
filaments that penetrate inside of the virial radius and deliver cold gas to
the central galaxy. For galaxies up to ~L*, this cold accretion gas is
responsible for the star formation in the disk at all times to the present.
Even for galaxies at higher masses, cold flows dominate the growth of the disk
at early times. Within this modified picture, galaxies are able to accrete a
large mass of cold gas, with lower initial gas temperatures leading to shorter
cooling times to reach the disk. Although star formation in the disk is
mitigated by supernovae feedback, the short cooling times allow for the growth
of stellar disks at higher redshifts than predicted by the standard model.Comment: accepted to Ap
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes
Galactic Halo Stars in Phase Space :A Hint of Satellite Accretion?
The present day chemical and dynamical properties of the Milky Way bear the
imprint of the Galaxy's formation and evolutionary history. One of the most
enduring and critical debates surrounding Galactic evolution is that regarding
the competition between ``satellite accretion'' and ``monolithic collapse'';
the apparent strong correlation between orbital eccentricity and metallicity of
halo stars was originally used as supporting evidence for the latter. While
modern-day unbiased samples no longer support the claims for a significant
correlation, recent evidence has been presented by Chiba & Beers
(2000,AJ,119,2843) for the existence of a minor population of high-eccentricity
metal-deficient halo stars. It has been suggested that these stars represent
the signature of a rapid (if minor) collapse phase in the Galaxy's history.
Employing velocity- and integrals of motion-phase space projections of these
stars, coupled with a series of N-body/Smoothed Particle Hydrodynamic (SPH)
chemodynamical simulations, we suggest an alternative mechanism for creating
such stars may be the recent accretion of a polar orbit dwarf galaxy.Comment: 12 pages(incl. figures). Accepted for publication in ApJ letters
sectio
- …
