15 research outputs found

    Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil

    Get PDF
    The dengue virus has a single-stranded positive-sense RNA genome of ∼10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1–4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in São José do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000–2001. Sixty DENV-3 from São José do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R0 = 1.53 and values for lineage 2 of R0 = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area

    Wider and Stronger Inhibitory Ring of the Attentional Focus in Schizophrenia

    No full text
    Anomalies of attentional selection have been repeatedly described in individuals with schizophrenia spectrum disorders. However, a precise analysis of their ability to inhibit irrelevant visual information during attentional selection is not documented. Recent behavioral as well as neurophysiological and computational evidence showed that attentional search among different competing stimuli elicits an area of suppression in the immediate surrounding of the attentional focus. In the present study, the strength and spatial extension of this surround suppression were tested in individuals with schizophrenia and neurotypical controls. Participants were asked to report the orientation of a visual “pop-out” target, which appeared in different positions within a peripheral array of non-target stimuli. In half of the trials, after the target appeared, a probe circle circumscribed a non-target stimulus at various target-to-probe distances; in this case, participants were asked to report the probe orientation instead. Results suggest that, as compared to neurotypical controls, individuals with schizophrenia showed stronger and spatially more extended filtering of visual information in the areas surrounding their attentional focus. This increased filtering of visual information outside the focus of attention might potentially hamper their ability to integrate different elements into coherent percepts and influence higher order behavioral, affective, and cognitive domains

    Bayesian skyline (BSL) plot and number of dengue reported cases.

    No full text
    <p>A) Bayesian skyline (BSL) plot of the virus genealogy-based estimate of the number of new infections (presented as <i>Ne.g</i>) indicated as the median for 82 DENV-3 isolates showing the increase from 180 to 120 days before the last sampling (from present day 0 or day of the last sample taken to the past), which matches with uncanny precision the rise in number of reported cases per 100,000 inhabitants from December of 2005. Apparent differences in overall population sizes are due to both the fact that the BSL shows accumulated number of new infections and to scaling problems or misreport. B) Number of Dengue reported cases in SJRP during the seasons of 2001–2002 (01_02), 2003 (02_03), 2004 (03_04), 2005 (04_05) and 2006 (05_06). It is noticeable that the maximum number of reported cases in 2006 happened in April, when the zenith of the epidemics, determined by the Bayesian skyline plot, was around February.</p

    Symmetrical matrices.

    No full text
    <p>Symmetrical matrices representing: A) temporal, B) genetic and C) spatial distances among the 46 samples. For easy visual comparison, numbers were substituted by a scale of colours that ranges from white (lower value) to black (higher value). The samples were organized temporally as indicated by the gradual pattern observed in matrix A), and the colours of the names of the samples are meant to facilitate the comparison with the results.</p

    Urban census tracts.

    No full text
    <p>Urban census tracts (<i>i.e.</i>, continuous and homogeneous areas comprising 300 buildings on average, IBGE 2002) according to socioeconomic levels (quartile) and dengue cases with molecular analysis according to strains from January 2006 to June 2006 (A); urban census tracts according to incidence coefficients of dengue cases (quartile) reported to the Surveillance System from September 2005 to August 2006 (B).</p

    São José do Rio Preto map.

    No full text
    <p>São José do Rio Preto map with urban census tracts, irregular development areas and autochthonous dengue cases reported and confirmed by the Surveillance System from September to November (A), December (B), January (C) and February (D). The areas outside the urban perimeter are irregular development areas with urban characteristics, but with inadequate sanitation infrastructure and lowest socioeconomic conditions in comparison to urban census tracts. There is a cluster of cases in one of these irregular areas in the North Zone of the city (Santa Clara) in September 2005 and a spread of the transmission to the rest of the urban perimeter (A).</p
    corecore