23 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    To market, to market-2012

    No full text
    This year\u27s To-Market, To-Market chapter provides summaries for 30 compounds that received first-time approval worldwide in 2012. Anticancer treatments dominated the new entries with 14 approvals, including 12 small molecules and 2 monoclonal antibodies. Three new diabetes treatments were introduced, along with three agents for gastrointestinal disorders. The remaining therapeutic areas had 1-2 approvals each. The summaries include indication, information about the disease treated, mechanism of action, selected preclinical data, key steps in the synthesis, pharmacokinetic and metabolism profile, clinical efficacy and safety data, and other key information about the approval. © 2013 Elsevier Inc

    Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy

    No full text
    Phosphodiesterase 10A (PDE10A) inhibitors increase the functionality of striatal medium spiny neurons and produce antipsychotic-like effects in rodents by blocking PDE10A mediated hydrolysis of cAMP and/or cGMP. In the current study, we characterized a radiolabeled PDE10A inhibitor, [3H]BMS-843496, and developed an ex vivo PDE10 binding autoradiographic assay to explore the relationship between PDE10 binding site occupancy and the observed biochemical and behavioral effects of PDE10 inhibitors in mice. [3H]BMS-843496 is a potent PDE10A inhibitor with a binding affinity (KD) of 0.15 nM and a functional selectivity of \u3e100-fold over other PDE subtypes tested. Specific [3H]BMS-843496 binding sites were dominant in the basal ganglia, especially the striatum, with low to moderate binding in the cortical and hippocampal areas, of the mouse and monkey brain. Systemic administration of PDE10 inhibitors produced a dose- and plasma/brain concentration-dependent increase in PDE10A occupancy measured in the striatum. PDE10A occupancy was positively correlated with striatal pCREB expression levels. PDE10A occupancy was also correlated with antipsychotic-like effects measured using the conditioned avoidance response model; a minimum of ∼40% occupancy was typically required to achieve efficacy. In contrast, a clear relationship between PDE10A occupancy and catalepsy scores, a potential extrapyramidal symptom readout in rodent, was not evident

    Discovery, Synthesis, and Preclinical Characterization of <i>N</i>‑(3-Chloro-4-fluorophenyl)‑1<i>H</i>‑pyrazolo[4,3‑<i>b</i>]pyridin-3-amine (VU0418506), a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu<sub>4</sub>)

    No full text
    The efficacy of positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 4 (mGlu<sub>4</sub>) in preclinical rodent models of Parkinson’s disease has been established by a number of groups. Here, we report an advanced preclinically characterized mGlu<sub>4</sub> PAM, <i>N</i>-(3-chloro-4-fluorophenyl)-1<i>H</i>-pyrazolo­[4,3-<i>b</i>]­pyridin-3-amine (VU0418506). We detail the discovery of VU0418506 starting from a common picolinamide core scaffold and evaluation of a number of amide bioisosteres leading to the novel pyrazolo­[4,3-<i>b</i>]­pyridine head group. VU0418506 has been characterized as a potent and selective mGlu<sub>4</sub> PAM with suitable in vivo pharmacokinetic properties in three preclinical safety species
    corecore