415 research outputs found
Approximations for many-body Green's functions: insights from the fundamental equations
Several widely used methods for the calculation of band structures and photo
emission spectra, such as the GW approximation, rely on Many-Body Perturbation
Theory. They can be obtained by iterating a set of functional differential
equations relating the one-particle Green's function to its functional
derivative with respect to an external perturbing potential. In the present
work we apply a linear response expansion in order to obtain insights in
various approximations for Green's functions calculations. The expansion leads
to an effective screening, while keeping the effects of the interaction to all
orders. In order to study various aspects of the resulting equations we
discretize them, and retain only one point in space, spin, and time for all
variables. Within this one-point model we obtain an explicit solution for the
Green's function, which allows us to explore the structure of the general
family of solutions, and to determine the specific solution that corresponds to
the physical one. Moreover we analyze the performances of established
approaches like over the whole range of interaction strength, and we
explore alternative approximations. Finally we link certain approximations for
the exact solution to the corresponding manipulations for the differential
equation which produce them. This link is crucial in view of a generalization
of our findings to the real (multidimensional functional) case where only the
differential equation is known.Comment: 17 pages, 7 figure
Description of stochastic and chaotic series using visibility graphs
Nonlinear time series analysis is an active field of research that studies
the structure of complex signals in order to derive information of the process
that generated those series, for understanding, modeling and forecasting
purposes. In the last years, some methods mapping time series to network
representations have been proposed. The purpose is to investigate on the
properties of the series through graph theoretical tools recently developed in
the core of the celebrated complex network theory. Among some other methods,
the so-called visibility algorithm has received much attention, since it has
been shown that series correlations are captured by the algorithm and
translated in the associated graph, opening the possibility of building
fruitful connections between time series analysis, nonlinear dynamics, and
graph theory. Here we use the horizontal visibility algorithm to characterize
and distinguish between correlated stochastic, uncorrelated and chaotic
processes. We show that in every case the series maps into a graph with
exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of
{\lambda} characterizes the specific process. The frontier between chaotic and
correlated stochastic processes, {\lambda} = ln(3/2), can be calculated
exactly, and some other analytical developments confirm the results provided by
extensive numerical simulations and (short) experimental time series
Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: the case of the relativistic harmonic oscillator
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions,
i.e., including a linear pseudoscalar potential and quadratic scalar and vector
potentials which have equal or opposite signs. We consider positive and
negative quadratic potentials and discuss in detail their bound-state solutions
for fermions and antifermions. The main features of these bound states are the
same as the ones of the generalized three-dimensional relativistic harmonic
oscillator bound states. The solutions found for zero pseudoscalar potential
are related to the spin and pseudospin symmetry of the Dirac equation in 3+1
dimensions. We show how the charge conjugation and chiral
transformations relate the several spectra obtained and find that for massless
particles the spin and pseudospin symmetry related problems have the same
spectrum, but different spinor solutions. Finally, we establish a relation of
the solutions found with single-particle states of nuclei described by
relativistic mean-field theories with scalar, vector and isoscalar tensor
interactions and discuss the conditions in which one may have both nucleon and
antinucleon bound states.Comment: 33 pages, 10 figures, uses revtex macro
Computing stationary free-surface shapes in microfluidics
A finite-element algorithm for computing free-surface flows driven by
arbitrary body forces is presented. The algorithm is primarily designed for the
microfluidic parameter range where (i) the Reynolds number is small and (ii)
force-driven pressure and flow fields compete with the surface tension for the
shape of a stationary free surface. The free surface shape is represented by
the boundaries of finite elements that move according to the stress applied by
the adjacent fluid. Additionally, the surface tends to minimize its free energy
and by that adapts its curvature to balance the normal stress at the surface.
The numerical approach consists of the iteration of two alternating steps: The
solution of a fluidic problem in a prescribed domain with slip boundary
conditions at the free surface and a consecutive update of the domain driven by
the previously determined pressure and velocity fields. ...Comment: Revised versio
Trialogue on the number of fundamental constants
This paper consists of three separate articles on the number of fundamental
dimensionful constants in physics. We started our debate in summer 1992 on the
terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the
subject to find that our views still diverged and decided to explain our
current positions. LBO develops the traditional approach with three constants,
GV argues in favor of at most two (within superstring theory), while MJD
advocates zero.Comment: Version appearing in JHEP; 31 pages late
Measurement of Electron Backscattering in the Energy Range of Neutron -Decay
We report on the first detailed measurements of electron backscattering from
low Z targets at energies up to 124 keV. Both energy and angular distributions
of the backscattered electrons are measured and compared with electron
transport simulations based on the Geant4 and Penelope Monte Carlo simulation
codes. Comparisons are also made with previous, less extensive, measurements
and with measurements at lower energies.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Thick surface flows of granular materials: The effect of the velocity profile on the avalanche amplitude
A few years ago, Bouchaud al. introduced a phenomenological model to describe
surface flows of granular materials [J. Phys. Fr. I, 4, 1383 (1994)]. According
to this model, one can distinguish between a static phase and a rolling phase
that are able to exchange grains through an erosion/accretion mechanism.
Boutreux et al. [Phys. Rev. E, 58, 4692 (1998)] proposed a modification of the
exchange term in order to describe thicker flows where saturation effects are
present. However, these approaches assumed that the downhill convection
velocity of the grains is constant inside the rolling phase, a hypothesis that
is not verified experimentally. In this article, we therefore modify the above
models by introducing a velocity profile in the flow, and study the physical
consequences of this modification in the simple situation of an avalanche in an
open cell. We present a complete analytical description of the avalanche in the
case of a linear velocity profile, and generalize the results for a power-law
dependency. We show, in particular, that the amplitude of the avalanche is
strongly affected by the velocity profile.Comment: 7 figures, accepted for publication in Phys. Rev.
A Parametrization of Bipartite Systems Based on SU(4) Euler Angles
In this paper we give an explicit parametrization for all two qubit density
matrices. This is important for calculations involving entanglement and many
other types of quantum information processing. To accomplish this we present a
generalized Euler angle parametrization for SU(4) and all possible two qubit
density matrices. The important group-theoretical properties of such a
description are then manifest. We thus obtain the correct Haar (Hurwitz)
measure and volume element for SU(4) which follows from this parametrization.
In addition, we study the role of this parametrization in the Peres-Horodecki
criteria for separability and its corresponding usefulness in calculating
entangled two qubit states as represented through the parametrization.Comment: 23 pages, no figures; changed title and abstract and rewrote certain
areas in line with referee comments. To be published in J. Phys. A: Math. and
Ge
Basins of attraction on random topography
We investigate the consequences of fluid flowing on a continuous surface upon
the geometric and statistical distribution of the flow. We find that the
ability of a surface to collect water by its mere geometrical shape is
proportional to the curvature of the contour line divided by the local slope.
Consequently, rivers tend to lie in locations of high curvature and flat
slopes. Gaussian surfaces are introduced as a model of random topography. For
Gaussian surfaces the relation between convergence and slope is obtained
analytically. The convergence of flow lines correlates positively with drainage
area, so that lower slopes are associated with larger basins. As a consequence,
we explain the observed relation between the local slope of a landscape and the
area of the drainage basin geometrically. To some extent, the slope-area
relation comes about not because of fluvial erosion of the landscape, but
because of the way rivers choose their path. Our results are supported by
numerically generated surfaces as well as by real landscapes
The GRA Beam-Splitter Experiments and Particle-Wave Duality of Light
Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to
demonstrate the particle behaviour of light and a Mach-Zehnder interferometer
experiment to demonstrate the wave behaviour of light. The distinguishing
feature of these experiments is the use of a gating system to produce near
ideal single photon states. With the demonstration of both wave and particle
behaviour (in two mutually exclusive experiments) they claim to have
demonstrated the dual particle-wave behaviour of light and hence to have
confirmed Bohr's principle of complementarity. The demonstration of the wave
behaviour of light is not in dispute. But we want to demonstrate, contrary to
the claims of GRA, that their beam-splitter experiment does not conclusively
confirm the particle behaviour of light, and hence does not confirm
particle-wave duality, nor, more generally, does it confirm complementarity.
Our demonstration consists of providing a detailed model based on the Causal
Interpretation of Quantum Fields (CIEM), which does not involve the particle
concept, of GRA's which-path experiment. We will also give a brief outline of a
CIEM model for the second, interference, GRA experiment.Comment: 24 pages, 4 figure
- …