21 research outputs found

    Interactive Sonification for Structural Biology and Structure-based Drug Design

    Get PDF
    The visualisation of structural biology data can be quite challenging as the datasets are complex, in particular the intrinsic dynamics/flexibility. Therefore some researchers have looked into the use of sonification for the display of proteins. Combining sonification and visualisation appears to be well fitted to this problem, but at the time of writing there are no plugins available for any of the major molecular visualisation applications. Therefore we set out to develop a sonification plugin for one of those applications, released as open-source software, in order to facilitate scrutiny and evaluation from as many parties as possible. This paper presents our open source sonification plugin for UCSF Chimera, which we have developed in collaboration with medicinal chemists and structural biologists. We determined two tasks that we deemed were not well represented visually and developed sonifications for them. Furthermore, we extended a general-purpose Chimera tool to map attributes of protein residues to pitch. We evaluated one of the tasks with eight participants and present the results of this evaluation

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis.

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival

    Long-Range Entropic Effects on Protein Intrinsically Disordered Regions

    No full text
    Entropy calculations represent one of the most challenging steps in obtaining the binding free energy in proteins and their complexes, which is a grand challenge in computational biology. In this paper we define the workframe of a novel method to calculate structural entropy for protein molecular simulation : SQuE ( Strucutral Quantifier of Entropy). Using a first degree approximation for the probability distribution, we were able to calculate the entropic effects that emerges from a intrinsically disordered (ID) region in UDP-glucose 6-dehydrogenase (UGDH) protein structure. We were able to quantify the configurational entropy difference in the structured core caused by the truncation of the C-terminal ID-tail, and evaluate the protein conformational changes in the structured domain.<br /

    Development of Charge-Augmented Three-Point Water Model (CAIPi3P) for Accurate Simulations of Intrinsically Disordered Proteins

    No full text
    Intrinsically disordered proteins (IDPs) are molecules without a fixed tertiary structure, exerting crucial roles in cellular signalling, growth and molecular recognition events. Due to their high plasticity, IDPs are very challenging in experimental and computational structural studies. To provide detailed atomic insight in IDPs&rsquo; dynamics governing their functional mechanisms, all-atom molecular dynamics (MD) simulations are widely employed. However, the current generalist force fields and solvent models are unable to generate satisfactory ensembles for IDPs when compared to existing experimental data. In this work, we present a new solvation model, denoted as the Charge-Augmented Three-Point Water Model for Intrinsically Disordered Proteins (CAIPi3P). CAIPi3P has been generated by performing a systematic scan of atomic partial charges assigned to the widely popular molecular scaffold of the three-point TIP3P water model. We found that explicit solvent MD simulations employing CAIPi3P solvation considerably improved the small-angle X-ray scattering (SAXS) scattering profiles for three different IDPs. Not surprisingly, this improvement was further enhanced by using CAIPi3P water in combination with the protein force field parametrized for IDPs. We also demonstrated the applicability of CAIPi3P to molecular systems containing structured as well as intrinsically disordered regions/domains. Our results highlight the crucial importance of solvent effects for generating molecular ensembles of IDPs which reproduce the experimental data available. Hence, we conclude that our newly developed CAIPi3P solvation model is a valuable tool for molecular simulations of intrinsically disordered proteins and assessing their molecular dynamics

    Structure, Dynamics, and Ligand Recognition of Human-Specific CHRFAM7A (Dupα7) Nicotinic Receptor Linked to Neuropsychiatric Disorders

    No full text
    Cholinergic α7 nicotinic receptors encoded by the CHRNA7 gene are ligand-gated ion channels directly related to memory and immunomodulation. Exons 5–7 in CHRNA7 can be duplicated and fused to exons A-E of FAR7a, resulting in a hybrid gene known as CHRFAM7A, unique to humans. Its product, denoted herein as Dupα7, is a truncated subunit where the N-terminal 146 residues of the ligand binding domain of the α7 receptor have been replaced by 27 residues from FAM7. Dupα7 negatively affects the functioning of α7 receptors associated with neurological disorders, including Alzheimer’s diseases and schizophrenia. However, the stoichiometry for the α7 nicotinic receptor containing dupα7 monomers remains unknown. In this work, we developed computational models of all possible combinations of wild-type α7 and dupα7 pentamers and evaluated their stability via atomistic molecular dynamics and coarse-grain simulations. We assessed the effect of dupα7 subunits on the Ca2+ conductance using free energy calculations. We showed that receptors comprising of four or more dupα7 subunits are not stable enough to constitute a functional ion channel. We also showed that models with dupα7/α7 interfaces are more stable and are less detrimental for the ion conductance in comparison to dupα7/dupα7 interfaces. Based on these models, we used protein–protein docking to evaluate how such interfaces would interact with an antagonist, α-bungarotoxin, and amyloid Aβ42. Our findings show that the optimal stoichiometry of dupα7/α7 functional pentamers should be no more than three dupα7 monomers, in favour of a dupα7/α7 interface in comparison to a homodimer dupα7/dupα7 interface. We also showed that receptors bearing dupα7 subunits are less sensitive to Aβ42 effects, which may shed light on the translational gap reported for strategies focused on nicotinic receptors in ‘Alzheimer’s disease research

    Development of Charge-Augmented Three-Point Water Model (CAIPi3P) for Accurate Simulations of Intrinsically Disordered Proteins

    No full text
    Intrinsically disordered proteins (IDPs) are molecules without a fixed tertiary structure, exerting crucial roles in cellular signalling, growth and molecular recognition events. Due to their high plasticity, IDPs are very challenging in experimental and computational structural studies. To provide detailed atomic insight in IDPs dynamics governing its functional mechanisms, all-atom molecular dynamics (MD) simulations are widely employed. However, the current generalist force fields and solvent models are unable to generate satisfactory ensembles for IDPs when compared to existing experimental data. In this work, we present a new solvation model, denoted as Charge-Augmented 3 Point Water model for Intrinsically-disordered Proteins (CAIPi3P). CAIPi3P has been generated by performing a systematic scanning of atomic partial charges assigned to the widely popular molecular scaffold of the three-point TIP3P water model. We found that explicit solvent MD simulations employing CAIPi3P solvation considerably improved the SAXS scattering profiles for three different IDPs. Not surprisingly, this improvement was further enhanced by using CAIPi3P water in combination with the protein force field parametrized for IDPs. We have also demonstrated applicability of CAIPi3P to molecular systems containing structured as well as intrinsically disordered regions/domains. Our results highlight the crucial importance of solvent effects for generating molecular ensembles of IDPs which reproduce the experimental data available. Hence, we conclude that our newly developed CAIPi3P solvation model is a valuable tool assisting molecular simulations of intrinsically disordered proteins and assessing their molecular dynamics

    Controlling the Heterodimerisation of the Phytosulfokine Receptor 1 (PSKR1) via Island Loop Modulation

    No full text
    Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing a pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between a leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor’s island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of the PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel “druggable” binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications
    corecore