440 research outputs found

    Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals

    Get PDF
    A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results

    Effects of Local and Nonlocal Substructure Spin on Localization in Tantalum Top-Hat Specimen

    Get PDF
    Effects of local and nonlocal substructure spin on the localization behavior of tantalum top-hat specimens subjected to high-rate compression are investigated. The orientation of a quadratic yield surface within the space of the intermediate configuration second Piola Kirchhoff stress is defined by a triad of substructure unit director vectors. Local evolution kinetics for the substructure directors are based on a plastic constitutive spin proportional to the non-coaxiality between stress and plastic rate of deformation within the spinless intermediate configuration. An extension of the local plastic constitutive spin to reflect nonlocal kinetics is made by attenuating or amplifying the spin rate depending on the misorientation of the substructure directors at a material point with those at adjacent material points within some neighborhood. Increased local spin rates tend to accentuate localization of plastic deformation and acts as a constitutive softening mechanism. On the other hand, the constraint imposed by nonlocal evolution of substructure orientation affects the plastic deformation field by reducing the propensity for flow, thus delaying localization and increasing the spatial coherence of the director vector field

    Index of Complexity, Outcome and Need scored on plaster and digital models

    Get PDF
    The aim of this study was to compare standard plaster models with their digital counterparts for the applicability of the Index of Complexity, Outcome, and Need (ICON). Generated study models of 30 randomly selected patients: 30 pre- (T0) and 30 post- (T1) treatment. Two examiners, calibrated in the ICON, scored the digital and plaster models. The overall ICON scores were evaluated for reliability and reproducibility using kappa statistics and reliability coefficients. The values for reliability of the total and weighted ICON scores were generally high for the T0 sample (range 0.83-0.95) but less high for the T1 sample (range 0.55-0.85). Differences in total ICON score between plaster and digital models resulted in mostly statistically insignificant values (P values ranging from 0.07 to 0.19), except for observer 1 in the T1 sample. No statistically different values were found for the total ICON score on either plaster or digital models. ICON scores performed on computer-based models appear to be as accurate and reliable as ICON scores on plaster model

    Reduced masticatory function is related to lower satellite cell numbers in masseter muscle

    Get PDF
    The physiology of masseter muscles is known to change in response to functional demands, but the effect on the satellite cell (SC) population is not known. In this study, the hypothesis is tested that a decreased functional demand of the masseter muscle causes a reduction of SCs. To this end, twelve 5-week-old male Sprague-Dawley rats were put on a soft diet (SD, n = 6) or a hard diet (HD, n = 6) and sacrificed after 14 days. Paraffin sections of the superficial masseter and the m. digastricus (control muscle) were stained with haematoxylin and eosin for tissue survey and with anti-myosin heavy chain (MHC) for slow and fast fibres. Frozen sections of both muscles were double-stained for collagen type IV and Pax7. Slow MHC fibres were equally distributed in the m. digastricus but only localized in a small area of the m. masseter. No differences between HD or SD for the m. digastricus were found. The m. masseter had more SCs per fibre in HD than in SD (0.093 ± 0.007 and 0.081 ± 0.008, respectively; P = 0.027). The m. masseter had more fibres per surface area than the m. digastricus in rats with an SD group (758.1 ± 101.6 and 568.4±85.6, P = 0.047) and a HD group (737.7 ± 32.6 and 592.2 ± 82.2; P = 0.007). The m. digastricus had more SCs per fibre than the m. masseter in the SD group (0.094 ± 0.01 and 0.081 ± 0.008; P = 0.039). These results suggest that reduced masseter muscle function is related to a lower number of SCs. Reduced muscle function might decrease microdamage and hence the requirement of SCs in the muscle fibre
    • …
    corecore