134 research outputs found
DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite
Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density
Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere
Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite
Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude, inner regions of geospace
Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradient
MHD consistent cellular automata (CA) models II. Applications to solar flares
In Isliker et al. (2000b), an extended cellular automaton (X-CA) model for
solar flares was introduced. In this model, the interpretation of the model's
grid-variable is specified, and the magnetic field, the current, and an
approximation to the electric field are yielded, all in a way that is
consistent with Maxwell's and the MHD equations. Here, we reveal which relevant
plasma physical processes are implemented by the X-CA model and in what form,
and what global physical set-up is assumed by this model when it is in its
natural state (SOC). The basic results are: (1) On large-scales, all variables
show characteristic quasi-symmetries. (2) The global magnetic topology forms
either (i) closed magnetic field lines, or (ii) an arcade of field lines above
the bottom plane line, if the model is slightly modified. (3) In case of the
magnetic topology (ii), loading can be interpreted as if there were a plasma
which flows predominantly upwards, whereas in case of the magnetic topology
(i), as if there were a plasma flow expanding from the neutral line. (4) The
small-scale physics in the bursting phase represent localized diffusive
processes. (5) The local diffusivity usually has a value which is effectively
zero, and it turns locally to an anomalous value if a threshold is exceeded,
whereby diffusion dominates the quiet evolution (loading). (6) Flares
(avalanches) are accompanied by the appearance of localized, intense electric
fields. (7) In a variant on the X-CA model, the magnitude of the current is
used directly in the instability criterion. First results indicate that the SOC
state persists. (8) The current-dissipation during flares is spatially
fragmented into a large number of dissipative current-surfaces of varying
sizes, which show a highly dynamic temporal evolution.Comment: 13 pages, 12 figures; in press at Astronomy and Astrophysics (2001
Magnetic Field Measurement on the C/NOFS Satellite: Geomagnetic Storm Effects in the Low Latitude Ionosphere
The Vector Electric Field Investigation (VEFI) suite onboard the Communications/Navigation Outage Forecasting System (C/NOFS) spacecraft includes a sensitive fluxgate magnetometer to measure DC and ULF magnetic fields in the low latitude ionosphere. The instrument includes a DC vector measurement at 1 sample/sec with a range of +/- 45,000 nT whose primary objective is to provide direct measurements of both V x B and E x B that are more accurate than those obtained using a simple magnetic field model. These data can also be used for scientific research to provide information of large-scale ionospheric and magnetospheric current systems, which, when analyzed in conjunction with the C/NOFS DC electric field measurements, promise to advance our understanding of the electrodynamics of the low latitude ionosphere. In this study, we use the magnetic field data to study the temporal and local time variations of the ring currents during geomagnetic storms. We first compare the in situ measurements with the POMME (the POtsdam Magnetic Model of the Earth) model in order to provide an in-flight "calibration" of the data as well as compute magnetic field residuals essential for revealing large scale external current systems. We then compare the magnetic field residuals observed both during quiet times and during geomagnetic storms at the same geographic locations to deduce the magnetic field signatures of the ring current. As will be shown, the low inclination of the C/NOFS satellite provides a unique opportunity to study the evolution of the ring current as a function of local time, which is particularly insightful during periods of magnetic storms. This paper will present the initial results of this study
The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations
We analyze the occurrence frequency distributions of peak fluxes , total
fluxes , and durations of solar flares over the last three solar cycles
(during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI.
From the synthesized data we find powerlaw slopes with mean values of
for the peak flux, for the total
flux, and for flare durations. We find a systematic
anti-correlation of the powerlaw slope of peak fluxes as a function of the
solar cycle, varying with an approximate sinusoidal variation
, with a
mean of , a variation of , a solar cycle
period yrs, and a cycle minimum time . The
powerlaw slope is flattest during the maximum of a solar cycle, which indicates
a higher magnetic complexity of the solar corona that leads to an
overproportional rate of powerful flares.Comment: subm. to Solar Physic
Simulating Flaring Events in Complex Active Regions Driven by Observed Magnetograms
We interpret solar flares as events originating from active regions that have
reached the Self Organized Critical state, by using a refined Cellular
Automaton model with initial conditions derived from observations. Aims: We
investigate whether the system, with its imposed physical elements,reaches a
Self Organized Critical state and whether well-known statistical properties of
flares, such as scaling laws observed in the distribution functions of
characteristic parameters, are reproduced after this state has been reached.
Results: Our results show that Self Organized Criticality is indeed reached
when applying specific loading and relaxation rules. Power law indices obtained
from the distribution functions of the modeled flaring events are in good
agreement with observations. Single power laws (peak and total flare energy) as
well as power laws with exponential cutoff and double power laws (flare
duration) are obtained. The results are also compared with observational X-ray
data from GOES satellite for our active-region sample. Conclusions: We conclude
that well-known statistical properties of flares are reproduced after the
system has reached Self Organized Criticality. A significant enhancement of our
refined Cellular Automaton model is that it commences the simulation from
observed vector magnetograms, thus facilitating energy calculation in physical
units. The model described in this study remains consistent with fundamental
physical requirements, and imposes physically meaningful driving and
redistribution rules.Comment: 14 pages; 12 figures; 6 tables - A&A, in pres
The phase relation between sunspot numbers and soft X-ray flares
To better understand long-term flare activity, we present a statistical study
on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with
respect to the smoothed monthly sunspot numbers. There is no time lag between
the sunspot numbers and M-class flares in cycle 22. However, there is a
one-month time lag for C-class flares and a one-month time lead for X-class
flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of one month, 5 months, and 21 months respectively with
respect to sunspot numbers. If we take the three types of flares together, the
smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months
in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months
in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore,
the correlation coefficients of the smoothed monthly peak fluxes of M-class and
X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22
than those in cycles 21 and 23. The correlation coefficients between the three
kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and
23. These findings may be instructive in predicting C-class, M-class, and
X-class flares regarding sunspot numbers in the next cycle and the physical
processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space
Scienc
- …