2,923 research outputs found

    Second bound state of PsH

    Get PDF
    The existence of a second bound state of PsH that is electronically stable and also stable against positron annihilation by the normal 2gamma and 3gamma processes is demonstrated by explicit calculation. The state can be found in the 2,4So symmetries with the two electrons in a spin triplet state. The binding energy against dissociation into the H(2p) + Ps(2p) channel was 6.06x10-4 Hartree. The dominant decay mode of the states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation. The NaPs system of the same symmetry is also electronically stable with a binding energy of 1.553x10-3 Hartree with respect to the Na(3p) + Ps(2p) channel.Comment: 4 pages, 2 figures, RevTex styl

    The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.

    No full text
    Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites

    A Hybrid N-body--Coagulation Code for Planet Formation

    Full text link
    We describe a hybrid algorithm to calculate the formation of planets from an initial ensemble of planetesimals. The algorithm uses a coagulation code to treat the growth of planetesimals into oligarchs and explicit N-body calculations to follow the evolution of oligarchs into planets. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. Several complete calculations of terrestrial planet formation with the hybrid code yield good agreement with previously published calculations. These results demonstrate that the hybrid code provides an accurate treatment of the evolution of planetesimals into planets.Comment: Astronomical Journal, accepted; 33 pages + 11 figure

    Developing evidence-based practice: the role of case-based research

    Get PDF
    How can practitioners engage in evidence-based practice when the evidence for effectiveness of psychological treatments comes from randomized controlled trials using patient populations different from those encountered in everyday settings and treatment manuals that seem oversimplified and inflexible? The authors argue that important evidence about best practice comes from case-based research, which builds knowledge in a clinically useful manner and complements what is achieved by multivariate research methods. A multidimensional model of the research process is provided that includes clinical practice and case-based research as significant contributors. The authors summarize the principles of case-based research and provide examples of recent technical advances. Finally, the authors suggest ways in which practitioners can apply the case-based approach in researching and publishing their own cases, perhaps in collaboration with university-based researchers

    Transfer learning in hybrid classical-quantum neural networks

    Get PDF
    We extend the concept of transfer learning, widely applied in modern machine learning algorithms, to the emerging context of hybrid neural networks composed of classical and quantum elements. We propose different implementations of hybrid transfer learning, but we focus mainly on the paradigm in which a pre-trained classical network is modified and augmented by a final variational quantum circuit. This approach is particularly attractive in the current era of intermediate-scale quantum technology since it allows to optimally pre-process high dimensional data (e.g., images) with any state-of-the-art classical network and to embed a select set of highly informative features into a quantum processor. We present several proof-of-concept examples of the convenient application of quantum transfer learning for image recognition and quantum state classification. We use the crossplatform software library PennyLane to experimentally test a high-resolution image classifier with two different quantum computers, respectively provided by IBM and Rigetti

    Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

    Get PDF
    Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 25247083Erasmus+FAR2012-2017FIR2016FIR2018PRIN "Biotic resilience to global change: biomineralization of planktonic and benthic calcifiers in the past, present and future" 2017RX9XXXYBioMed Central-Prepay Membership at the University of FerraraJunta de Andalucía RNM 190Committee on ResearchMuseum of PaleontologyDepartment of Integrative Biology, UC BerkeleyUC Pacific Rim Projec
    • …
    corecore