17 research outputs found

    Evaluating the utility of knowledge-based planning for clinical trials using the TROG 08.03 post prostatectomy radiation therapy planning data

    Get PDF
    Background and purpose: Poor quality radiotherapy can detrimentally affect outcomes in clinical trials. Our purpose was to explore the potential of knowledge-based planning (KBP) for quality assurance (QA) in clinical trials. Materials and methods: Using 30 in-house post-prostatectomy radiation treatment (PPRT) plans, an iterative KBP model was created according to the multicentre clinical trial protocol, delivering 64 Gy in 32 fractions. KBP was used to replan 137 plans. The KB (knowledge based) plans were evaluated for their ability to fulfil the trial constraints and were compared against their corresponding original treatment plans (OTP). A second analysis between only the 72 inversely planned OTPs (IP-OTPs) and their corresponding KB plans was performed. Results: All dose constraints were met in 100% of KB plans versus 69% of OTPs. KB plans demonstrated significantly less variation in PTV coverage (Mean dose range: KB plans 64.1 Gy-65.1 Gy vs OTP 63.1 Gy-67.3 Gy, p \u3c 0.01). KBP resulted in significantly lower doses to OARs. Rectal V60Gy and V40Gy were 17.7% vs 27.7% (p \u3c 0.01) and 40.5% vs 53.9% (p \u3c 0.01) for KB plans and OTP respectively. Left femoral head (FH) V45Gy and V35Gy were 0.4% vs 7.4% (p \u3c 0.01) and 7.9% vs 34.9% (p \u3c 0.01) respectively. In the second analysis plan improvements were maintained. Conclusions: KBP created high quality PPRT plans using the data from a multicentre clinical trial in a single optimisation. It is a powerful tool for utilisation in clinical trials for patient specific QA, to reduce dose to surrounding OARs and variations in plan quality which could impact on clinical trial outcomes

    Market Multiples: Assessing the Relationships between M&A Deal Multiples, Market Conditions, and Target Accounting Measures

    No full text
    Mergers and Acquisitions research often focuses on the prices paid, as a multiple of earnings or cash flow, by strategic acquirers for their targets. These multiples are salient to this body of research, as they form the basis of company valuation on a theoretical and practical level. A variety of factors influence the size of these multiples, including prevailing macroeconomic conditions, the particular industry of the target company, the target’s profitability, and company-specific factors such as the market’s perceived risk of the target. This paper analyzes the relationship between multiples paid in strategic acquisitions and prevailing macroeconomic conditions, as well as accounting measures of the target company, with the goal of assessing whether or not macroeconomic conditions or company-specific characteristics play a role in determining the multiple paid. Our research contributes to the existing literature by using forecast P/E and EBITDA multiples, which provide a more forward-looking picture of how targets are valued. We analyze the deals for the food, business services, measuring equipment, oil and gas, and software industries.Honors Thesi

    On the accuracy of dose prediction near metal fixation devices for spine SBRT

    Get PDF
    The metallic fixations used in surgical procedures to support the spine mechanically usually consist of high-density materials. Radiation therapy to palliate spinal cord compression can include prophylactic inclusion of potential tumor around the site of such fixation devices. Determination of the correct density and shape of the spine fixation device has a direct effect on the dose calculation of the radiation field. Even with the application of modern computed tomography (CT), under- or overestimation of dose, both immediately next to the device and in the surrounding tissues, can occur due to inaccuracies in the dose prediction algorithm. In this study, two commercially available dose prediction algorithms (Eclipse AAA and ACUROS), EGSnrc Monte Carlo, and GAFchromic film measurements were compared for a clinical spine SBRT case to determine their accuracy. An open six-field plan and a clinical nine-field IMRT plan were applied to a phantom containing a metal spine fixation device. Dose difference and gamma analysis were performed in and around the tumor region adjacent to the fixation device. Dose calculation inconsistency was observed in the open field plan. However, in the IMRT plan, the dose perturbation effect was not observed beyond 5 mm. Our results suggest that the dose effect of the metal fixation device to the spinal cord and the tumor volume is not observable, and all dose calculation algorithms evaluated can provide clinically acceptable accuracy in the case of spinal SBRT, with the tolerance of 95% for gamma criteria of 3%/3 mm

    Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model

    No full text
    In this study we present two prediction methods, mean dose and summed dose, for predicting the number of A549 cells that will survive after modulated x-ray irradiation. The prediction methods incorporate the dose profile from the modulated x-ray fluence map applied across the cell sample and the linear quadratic (LQ) model. We investigated the clonogenic survival of A549 cells when irradiated using two different modulated x-ray fluence maps. Differences between the measured and predicted surviving fraction were observed for modulated x-ray irradiation. When the x-ray fluence map produced a steep dose gradient across the sample, fewer cells survived in the unirradiated region than expected. When the x-ray fluence map produced a less steep dose gradient across the sample, more cells survived in the unirradiated region than expected. Regardless of the steepness of the dose gradient, more cells survived in the irradiated region than expected for the reference dose range of 1-10 Gy. The change in the cell survival for the unirradiated regions of the two different dose gradients may be an important factor to consider when predicting the number of cells that will survive at the edge of modulated x-ray fields. This investigation provides an improved method of predicting cell survival for modulated x-ray radiation treatment. It highlights the limitations of the LQ model, particularly in its ability to describe the biological response of cells irradiated under these conditions.20 page(s

    A Preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    No full text
    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT).13 page(s

    Comparison of radiobiological parameters for 90Y radionuclide therapy (RNT) and external beam radiotherapy (EBRT) in vitro

    No full text
    Abstract Background Dose rate variation is a critical factor affecting radionuclide therapy (RNT) efficacy. Relatively few studies to date have investigated the dose rate effect in RNT. Therefore, the aim of this study was to benchmark 90Y RNT (at different dose rates) against external beam radiotherapy (EBRT) in vitro and compare cell kill responses between the two irradiation processes. Results Three human colorectal carcinoma (CRC) cell lines (HT29, HCT116, SW48) were exposed to 90Y doses in the ranges 1–10.4 and 6.2–62.3 Gy with initial dose rates of 0.013–0.13 Gy/hr (low dose rate, LDR) and 0.077–0.77 Gy/hr (high dose rate, HDR), respectively. Results were compared to a 6-MV photon beam doses in the range from 1–9 Gy with constant dose rate of 277 Gy/hr. The cell survival parameters from the linear quadratic (LQ) model were determined. Additionally, Monte Carlo simulations were performed to calculate the average dose, dose rate and the number of hits in the cell nucleus. For the HT29 cell line, which was the most radioresistant, the α/β ratio was found to be ≈ 31 for HDR–90Y and ≈ 3.5 for EBRT. LDR–90Y resulting in insignificant cell death compared to HDR–90Y and EBRT. Simulation results also showed for LDR–90Y, for doses ≲ 3 Gy, the average number of hits per cell nucleus is ≲ 2 indicating insufficiently delivered lethal dose. For 90Y doses ≳ ≳\gtrsim  3 Gy the number of hits per nucleus decreases rapidly and falls below ≈ 2 after ≈ 5 days of incubation time. Therefore, our results demonstrate that LDR–90Y is radiobiologically less effective than EBRT. However, HDR–90Y at ≈ 56 Gy was found to be radiobiologically as effective as acute ≈ 8 Gy EBRT. Conclusion These results demonstrate that the efficacy of RNT is dependent on the initial dose rate at which radiation is delivered. Therefore, for a relatively long half-life radionuclide such as 90Y, a higher initial activity is required to achieve an outcome as effective as EBRT

    Real-Time Image Guided Ablative Prostate Cancer Radiation Therapy: Results From the TROG 15.01 SPARK Trial

    Get PDF
    Purpose: Kilovoltage intrafraction monitoring (KIM) is a novel software platform implemented on standard radiation therapy systems and enabling real-time image guided radiation therapy (IGRT). In a multi-institutional prospective trial, we investigated whether real-time IGRT improved the accuracy of the dose patients with prostate cancer received during radiation therapy. Methods and materials: Forty-eight patients with prostate cancer were treated with KIM-guided SABR with 36.25 Gy in 5 fractions. During KIM-guided treatment, the prostate motion was corrected for by either beam gating with couch shifts or multileaf collimator tracking. A dose reconstruction method was used to evaluate the dose delivered to the target and organs at risk with and without real-time IGRT. Primary outcome was the effect of real-time IGRT on dose distributions. Secondary outcomes included patient-reported outcomes and toxicity. Results: Motion correction occurred in ≥1 treatment for 88% of patients (42 of 48) and 51% of treatments (121 of 235). With real-time IGRT, no treatments had prostate clinical target volume (CTV) D98% dose 5% less than planned. Without real-time IGRT, 13 treatments (5.5%) had prostate CTV D98% doses 5% less than planned. The prostate CTV D98% dose with real-time IGRT was closer to the plan by an average of 1.0% (range, -2.8% to 20.3%). Patient outcomes showed no change in the 12-month patient-reported outcomes compared with baseline and no grade ≥3 genitourinary or gastrointestinal toxicities. Conclusions: Real-time IGRT is clinically effective for prostate cancer SABR
    corecore