56 research outputs found

    Using Convolutional Neural Networks to identify Gravitational Lenses in Astronomical images

    Get PDF
    The Euclid telescope, due for launch in 2021, will perform an imaging and slitless spectroscopy survey over half the sky, to map baryon wiggles and weak lensing. During the survey Euclid is expected to resolve 100,000 strong gravitational lens systems. This is ideal to find rare lens configurations, provided they can be identified reliably and on a reasonable timescale. For this reason we have developed a Convolutional Neural Network (CNN) that can be used to identify images containing lensing systems. CNNs have already been used for image and digit classification as well as being used in astronomy for star-galaxy classification. Here our CNN is trained and tested on Euclid-like and KiDS-like simulations from the Euclid Strong Lensing Group, successfully classifying 77% of lenses, with an area under the ROC curve of up to 0.96. Our CNN also attempts to classify the lenses in COSMOS HST F814W-band images. After convolution to the Euclid resolution, we find we can recover most systems that are identifiable by eye. The Python code is available on Github

    Systems, Networks and Policy

    Get PDF
    Systems theory is fundamental to understanding the dynamics of the complex social systems of concern to policy makers. A system is defined as: (1) an assembly of components, connected together in an organised way; (2) the components are affected by being in the system and the behaviour of the systems is changed if they leave it; (3) the organised assembly of components does something; and (4) the assembly has been identified as being of particular interest. Feedback is central to system behaviour at all levels, and can be responsible for systems behaving in complex and unpredictable ways. Systems can be represented by networks and there is a growing literature that shows how the behaviour of individuals is highly dependent on their social networks. This includes copying or following the advice of others when making decisions. Network theory gives insights into social phenomena such as the spread of information and the way people form social groups which then constrain their behaviour. It is emerging as a powerful way of examining the dynamics of social systems. Most systems relevant to policy have many levels, from the individual to local and national and international organisations and institutions. In many social systems the micro, meso and macrolevel dynamics are coupled, meaning that they cannot be studied or modified in isolation. Systems and network science allow computer simulations to be used to investigate possible system behaviour. This science can be made available to policy makers through policy informatics which involves computer-based simulation, data, visualisation, and interactive interfaces. The future of science-based policy making is seen to be through Global Systems Science which combines complex systems science and policy informatics to inform policy makers and facilitate citizen engagement. In this context, systems theory and network science are fundamental for modelling far-from-equilibrium systems for policy purposes

    Management of iron-deficiency anemia following acute gastrointestinal hemorrhage: A narrative analysis and review

    Get PDF
    Many patients experiencing acute gastrointestinal bleeding (GIB) require iron supplemen-tation to treat subsequent iron deficiency (ID) or iron-deficiency anemia (IDA). Guidelinesregarding management of these patients are lacking. We aimed to identify areas of unmetneed in patients with ID/IDA following acute GIB in terms of patient management andphysician guidance. We formed an international working group of gastroenterologists toconduct a narrative review based on PubMed and EMBASE database searches (fromJanuary 2000 to February 2021), integrated with observations from our own clinical expe-rience. Published data on this subject are limited and disparate, and those relating topost-discharge outcomes, such as persistent anemia and re-hospitalization, are particularlylacking. Often, there is no post-discharge follow-up of these patients by a gastroenterolo-gist. Acute GIB-related ID/IDA, however, is a prevalent condition both at the time of hos-pital admission and at hospital discharge and is likely underdiagnosed and undertreated.Despite limited data, there appears to be notable variation in the prescribing of intravenous(IV)/oral iron regimens. There is also some evidence suggesting that, compared with oraliron, IV iron may restore iron levels faster following acute GIB, have a better tolerabilityprofile, and be more beneficial in terms of quality of life. Gaps in patient care exist inthe management of acute GIB-related ID/IDA, yet further data from largepopulation-based studies are needed to confirm this. We advocate the formulation ofevidence-based guidance on the use of iron therapies in these patients, aiding a more stan-dardized best-practice approach to patient care

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Siamese Survival Analysis with Competing Risks

    Full text link
    Survival analysis in the presence of multiple possible adverse events, i.e., competing risks, is a pervasive problem in many industries (healthcare, finance, etc.). Since only one event is typically observed, the incidence of an event of interest is often obscured by other related competing events. This nonidentifiability, or inability to estimate true cause-specific survival curves from empirical data, further complicates competing risk survival analysis. We introduce Siamese Survival Prognosis Network (SSPN), a novel deep learning architecture for estimating personalized risk scores in the presence of competing risks. SSPN circumvents the nonidentifiability problem by avoiding the estimation of cause-specific survival curves and instead determines pairwise concordant time-dependent risks, where longer event times are assigned lower risks. Furthermore, SSPN is able to directly optimize an approximation to the C-discrimination index, rather than relying on well-known metrics which are unable to capture the unique requirements of survival analysis with competing risks

    Reading handwritten digits: a ZIP code recognition system

    Get PDF
    A neural network algorithm-based system that reads handwritten ZIP codes appearing on real US mail is described. The system uses a recognition-based segmenter, that is a hybrid of connected-components analysis (CCA), vertical cuts, and a neural network recognizer. Connected components that are single digits are handled by CCA. CCs that are combined or dissected digits are handled by the vertical-cut segmenter. The four main stages of processing are preprocessing, in which noise is removed and the digits are deslanted, CCA segmentation and recognition, vertical-cut-point estimation and segmentation, and directly lookup. The system was trained and tested on approximately 10000 images, five- and nine-digit ZIP code fields taken from real mail

    Routine Modeling with Time Series Metric Learning

    Get PDF
    version éditeur : https://rd.springer.com/chapter/10.1007/978-3-030-30484-3_47International audienceTraditionally, the automatic recognition of human activities is performed with supervised learning algorithms on limited sets of specific activities. This work proposes to recognize recurrent activity patterns, called routines, instead of precisely defined activities. The modeling of routines is defined as a metric learning problem, and an architecture, called SS2S, based on sequence-to-sequence models is proposed to learn a distance between time series. This approach only relies on inertial data and is thus non intrusive and preserves privacy. Experimental results show that a clustering algorithm provided with the learned distance is able to recover daily routines
    corecore