4,909 research outputs found

    The IBMAP approach for Markov networks structure learning

    Get PDF
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum

    Rodent models of cardiopulmonary disease: their potential applicability in studies of air pollutant susceptibility.

    Get PDF
    The mechanisms by which increased mortality and morbidity occur in individuals with preexistent cardiopulmonary disease following acute episodes of air pollution are unknown. Studies involving air pollution effects on animal models of human cardiopulmonary diseases are both infrequent and difficult to interpret. Such models are, however, extensively used in studies of disease pathogenesis. Primarily they comprise those developed by genetic, pharmacologic, or surgical manipulations of the cardiopulmonary system. This review attempts a comprehensive description of rodent cardiopulmonary disease models in the context of their potential application to susceptibility studies of air pollutants regardless of whether the models have been previously used for such studies. The pulmonary disease models include bronchitis, emphysema, asthma/allergy, chronic obstructive pulmonary disease, interstitial fibrosis, and infection. The models of systemic hypertension and congestive heart failure include: those derived by genetics (spontaneously hypertensive, Dahl S. renin transgenic, and other rodent models); congestive heart failure models derived by surgical manipulations; viral myocarditis; and cardiomyopathy induced by adriamycin. The characteristic pathogenic features critical to understanding the susceptibility to inhaled toxicants are described. It is anticipated that this review will provide a ready reference for the selection of appropriate rodent models of cardiopulmonary diseases and identify not only their pathobiologic similarities and/or differences to humans but also their potential usefulness in susceptibility studies

    ZigZag: A Middleware for Service Discovery in Future Internet

    Full text link

    Layered connectors: revisiting the formal basis of architectural connection for complex distributed systems

    Get PDF
    The complex distributed systems of nowadays require the dynamic composition of multiple components, which are autonomous and so complex that they can be considered as systems in themselves. These components often use different application protocols and are implemented on top of heterogeneous middleware, which hamper their successful interaction. The explicit and rigorous description and analysis of components interaction is essential in order to enable the dynamic composition of these components. In this paper, we propose a formal approach to represent and reason about interactions between components using layered connectors. Layered connectors describe components interaction at both the application and middleware layers and make explicit the role of middleware in the realisation of this interaction. We provide formal semantics of layered connectors and present an approach for the synthesis of layered connectors in order to enable the dynamic composition of highly heterogeneous components. We validate our approach through a case study in the area of collaborative emergency management

    Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    Full text link
    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    Measurement of direct photon production at Tevatron fixed target energies

    Full text link
    Measurements of the production of high transverse momentum direct photons by a 515 GeV/c piminus beam and 530 and 800 GeV/c proton beams in interactions with beryllium and hydrogen targets are presented. The data span the kinematic ranges of 3.5 < p_T < 12 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive direct-photon cross sections are compared with next-to-leading-order perturbative QCD calculations and expectations based on a phenomenological parton-k_T model.Comment: RevTeX4, 23 pages, 32 figures, submitted to Phys. Rev.
    • …
    corecore