20 research outputs found

    SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    Get PDF
    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-kappaB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-kappaB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation

    Tissue engineering on matrix: future of autologous tissue replacement

    Full text link
    Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this "conditioning" can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in vivo

    EH-myomesin spice isoform is a novel marker for dilated cardiomyopathy

    No full text
    New form of identification of Dilated cardiomyopathy by the EH-Myomesin spice isofor

    Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility

    No full text
    The type I interferon system genes IKBKE and IFIH1 are associated with the risk of systemic lupus erythematosus (SLE). To identify the sequence variants that are able to account for the disease association, we resequenced the genes IKBKE and IFIH1. Eighty-six single-nucleotide variants (SNVs) with potentially functional effect or differences in allele frequencies between patients and controls determined by sequencing were further genotyped in 1140 SLE patients and 2060 controls. In addition, 108 imputed sequence variants in IKBKE and IFIH1 were included in the association analysis. Ten IKBKE SNVs and three IFIH1 SNVs were associated with SLE. The SNVs rs1539241 and rs12142086 tagged two independent association signals in IKBKE, and the haplotype carrying their risk alleles showed an odds ratio of 1.68 (P-value=1.0 × 10−5). The risk allele of rs12142086 affects the binding of splicing factor 1 in vitro and could thus influence its transcriptional regulatory function. Two independent association signals were also detected in IFIH1, which were tagged by a low-frequency SNV rs78456138 and a missense SNV rs3747517. Their joint effect is protective against SLE (odds ratio=0.56; P-value=6.6 × 10−3). In conclusion, we have identified new SLE-associated sequence variants in IKBKE and IFIH1, and proposed functional hypotheses for the association signals.De tvĂ„ första författarna delar förstaförfattarskapet.</p
    corecore