9 research outputs found

    Seasonal Trends in Acoustic Detection of Marine Mammals in Baffin Bay and Melville Bay, Northwest Greenland

    Get PDF
    The expansion of hydrocarbon exploration in northwest Greenland has made it increasingly important to understand the occurrence of marine mammals in the region. We describe the seasonal occurrence of marine mammals and the spatial distribution of their calls in Baffin Bay and Melville Bay. Four Autonomous Multichannel Acoustic Recorders (AMARs) were deployed during summer 2012 (late July to early October), five recorders during September 2013, and two recorders from late September 2013 to early September 2014. The call presence of several species was analyzed using automatic call detection and manual verification analysis methods. A novel approach to discern narwhal (Monodon monoceros) clicks from beluga (Delphinapterus leucas) clicks was implemented during the verification process. Narwhal calls were detected in spring and fall, showing a south-to-north migration pattern in spring and a north-to-south migration pattern in fall. Few beluga whales were detected during fall 2013 and spring 2014. Bearded seal (Erignathus barbatus) calls were detected mainly during spring (mating period). A small number of bowhead whale calls (Balaena mysticetus) were detected during fall 2013 and spring and summer 2014. For the first time at this latitude in Baffin Bay, long-finned pilot whales (Globicephala melas) and sperm whales (Physeter macrocephalus) were detected during summer and fall. Our results suggest that the presence of marine mammals in Baffin Bay and Melville Bay is governed mainly by the annual cycle of sea ice formation and decay

    Sound exposure level as a metric for analyzing and managing underwater soundscapes

    Get PDF
    The auditory frequency weighted daily sound exposure level (SEL) is used in many jurisdictions to assess possible injury to the hearing of marine life. Therefore, using daily SEL to describe soundscapes would provide baseline information about the environment using the same tools used to measure injury. Here, the daily SEL from 12 recordings with durations of 18-97days are analyzed to: (1) identify natural soundscapes versus environments affected by human activity, (2) demonstrate how SEL accumulates from different types of sources, (3) show the effects of recorder duty cycling on daily SEL, (4) make recommendations on collecting data for daily SEL analysis, and (5) discuss the use of the daily SEL as an indicator of cumulative effects. The autocorrelation of the one-minute sound exposure is used to help identify soundscapes not affected by human activity. Human sound sources reduce the autocorrelation and add low-frequency energy to the soundscapes. To measure the daily SEL for all marine mammal auditory frequency weighting groups, data should be sampled at 64kHz or higher, for at least 1min out of every 30min. The daily autocorrelation of the one-minute SEL provides a confidence interval for the daily SEL computed with duty-cycled data. (C) 2019 Acoustical Society of America

    Characteristics of seismic survey pulses and the ambient soundscape in Baffin Bay and Melville Bay, West Greenland

    Get PDF
    In 2012 a seismic survey campaign involving four vessels was conducted in Baffin Bay, West Greenland. Long-distance (150 km) pre-survey acoustic modeling was performed in accordance with regulatory requirements. Four acoustic recorders, three with hydrophones at 100, 200, and 400m depths, measured ambient and anthropogenic sound during the survey. Additional recordings without the surveys were made from September 2013 to September 2014. The results show that (1) the soundscape of Baffin Bay is typical for open ocean environments and Melville Bay's soundscape is dominated by glacial ice noise; (2) there are distinct multipath arrivals of seismic pulses 40 km from the array; (3) seismic sound levels vary little as a function of depth; (4) high fidelity pre-survey acoustic propagation modeling produced reliable results; (5) the daily SEL did not exceed regulatory thresholds and were different using Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007) Aquat. Mamm. 33, 411-521] or NOAA weightings [National Marine Fisheries Service (2016). NOAA Technical Memorandum NMFS-OPR-55, p. 178]; (6) fluctuations of SPL with range were better described by additive models than linear regression; and (7) the survey increased the 1-min SPL by 28 dB, with most of the energy below 100 Hz; energy in the 16 000 Hz octave band was 20 dB above the ambient background 6 km from the source. (C) 2017 Acoustical Society of America

    Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia

    Get PDF
    The Western North-Pacific (WNP) gray whale feeding grounds are off the northeastern coast of Sakhalin Island, Russia and is comprised of a nearshore and offshore component that can be distinguished by both depth and location. Spatial movements of gray whales within their foraging grounds were examined based on 13 years of opportunistic vessel and shore-based photo-identification surveys. Site fidelity was assessed by examining annual return and resighting rates. Lagged Identification Rates (LIR) analyses were conducted to estimate the residency and transitional movement patterns within the two components of their feeding grounds. In total 243 individuals were identified from 2002-2014, among these were 94 calves. The annual return rate over the period 2002-2014 was 72%, excluding 35 calves only seen one year. Approximately 20% of the individuals identified from 2002-2010 were seen every year after their initial sighting (including eight individuals that returned for 13 consecutive years). The majority (239) of the WNP whales were observed in the nearshore area while only half (122) were found in the deeper offshore area. Within a foraging season, there was a significantly higher probability of gray whales moving from the nearshore to the offshore area. No mother-calf pairs, calves or yearlings were observed in the offshore area, which was increasingly used by mature animals. The annual return rates, and population growth rates that are primarily a result of calf production with little evidence of immigration, suggest that this population is demographically self-contained and that both the nearshore and offshore Sakhalin feeding grounds are critically important areas for their summer annual foraging activities. The nearshore habitat is also important for mother-calf pairs, younger individuals, and recently weaned calves. Nearshore feeding could also be energetically less costly compared to foraging in the deeper offshore habitat and provide more protection from predators, such as killer whales

    Improvement in Sleep Architecture is associated with the Indication of Surgery in Syndromic Craniosynostosis

    Get PDF
    Background: Children with syndromic craniosynostosis (sCS) often suffer from obstructive sleep apnea (OSA) and intracranial hypertension (ICH). Both OSA and ICH might disrupt sleep architecture. However, it is unclear how surgically treating OSA or ICH affects sleep architecture. The aim of this study was twofold: to explore the usefulness of sleep architecture analysis in detecting disturbed sleep and to determine whether surgical treatment can improve it. Methods: Eighty-three children with sCS and 35 control subjects, who had undergone a polysomnography (PSG), were included. Linear-mixed models showed the effects of OSA and ICH on sleep architecture parameters. In a subset of 19 patients, linear regression models illustrated the effects of OSA-indicated and ICHindicated surgery on pre-to-postoperative changes. Results: An increase in obstructive-apnea/hypopnea index (oAHI) was significantly associated with an increase in N2-sleep, arousal index, and respiratoryarousal index and a decrease in REM-sleep, N3-sleep, sleep efficiency, and sleep quality. ICH and having sCS were not related to any change in sleep architecture. OSA-indicated surgery significantly increased the total sleep time and sleep efficiency and decreased the arousal index and respiratory-arousal index. ICHindicated surgery significantly decreased REM-sleep, N1-sleep, sleep efficiency, and sleep quality. Conclusions: For routine detection of disturbed sleep in individual subjects, PSGassessed sleep architecture is currently not useful. OSA does disrupt sleep architecture, but ICH does not. OSA-indicated surgery improves sleep architecture, which stresses the importance of treating OSA to assure adequate sleep. ICH-indicated surgery affects sleep architecture, although it is not clear whether this is a positive or negative effect

    Roaring and repetition : how bowhead whales adjust their call density and source level (Lombard effect) in the presence of natural and seismic airgun survey noise

    Get PDF
    Over 500 000 automated and manual acoustic localizations, measured over seven years between 2008 and 2014, were used to examine how natural wind-driven noise and anthropogenic seismic airgun survey noise influence bowhead whale call densities (calls/km2/min) and source levels during their fall migration in the Alaskan Beaufort Sea. Noise masking effects, which confound measurements of behavioral changes, were removed using a modified point transect theory. The authors found that mean call densities generally rose with increasing continuous wind-driven noise levels. The occurrence of weak airgun pulse sounds also prompted an increase in call density equivalent to a 10–15 dB change in natural noise level, but call density then dropped substantially with increasing cumulative sound exposure level (cSEL) from received airgun pulses. At low in-band noise levels the mean source level of the acoustically-active population changed to nearly perfectly compensate for noise increases, but as noise levels increased further the mean source level failed to keep pace, reducing the population's communication space. An increase of >40 dB cSEL from seismic airgun activity led to an increase in source levels of just a few decibels. These results have implications for bowhead acoustic density estimation, and evaluations of the masking impacts of anthropogenic noise.Publisher PDFPeer reviewe
    corecore