17 research outputs found

    Meta-analysis & Review of Learner Performance & Preference: Virtual vs. Optical Microscopy

    Get PDF
    Background & Purpose: For nearly two decades, a wealth of literature has been published describing the various capabilities, uses, and adaptations of virtual microscopy (VM). Many studies have investigated the effects and benefits of VM on student learning compared to optical microscopy (OM). As such, this study statistically aggregated the findings of multiple comparative studies through a meta-analysis to summarize and substantiate the pedagogical efficacy of teaching with VM. Methods Using predefined eligibility criteria, teams of paired researchers screened the titles and abstracts of VM studies retrieved from seven different databases. After two rounds of screening, numerical and thematic data were extracted from the eligible studies for analysis. A summary effect size and estimate of heterogeneity were calculated to determine the effects of VM on learner performance and the amount of variance between studies, respectively. Trends in student perceptions were also analyzed and reported. Results: Of the 725 records screened, 72 studies underwent full-text review. In total, 12 studies were viable for meta-analysis and additional studies were reviewed to extract themes relating to learners’ perceptions of VM. The meta-analysis detected a small yet significant positive effect on learner performance (SMD=0.28, [CI=0.09, 0.47], p=0.003), indicating that learners experience marked knowledge gains when exposed to VM over OM. Variation among studies was evident as high heterogeneity was reported. An analysis of trends in learner perceptions noted that respondents favored VM over OM by a large margin. Conclusions: Despite many individual studies reporting non-significant findings when comparing VM to OM, the enhanced power afforded by meta-analysis revealed that the pedagogical approach of VM is modestly superior to OM and is preferred by learners

    CropPol: A dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001–2005 (21 studies), 2006–2010 (40), 2011–2015 (88), and 2016–2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).Fil: Allen Perkins, Alfonso. Universidad Politécnica de Madrid; España. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Magrach, Ainhoa. Universidad Politécnica de Madrid; EspañaFil: Dainese, Matteo. Eurac Research. Institute for Alpine Environment; ItaliaFil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Kleijn, David. Wageningen University & Research; Países BajosFil: Rader, Romina. University of New England; AustraliaFil: Reilly, James R.. Rutgers University; Estados UnidosFil: Winfree, Rachael. Rutgers University; Estados UnidosFil: Lundin, Ola. Swedish University of Agricultural Sciences; SueciaFil: McGrady, Carley M.. North Carolina State University; Estados UnidosFil: Brittain, Claire. University of California at Davis; Estados UnidosFil: Biddinger, David J.. University of California Davis; Estados UnidosFil: Artz, Derek R.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Elle, Elizabeth. University Fraser Simon; CanadáFil: Hoffman, George. State University of Oregon; Estados UnidosFil: Ellis, James D.. University of Florida; Estados UnidosFil: Daniels, Jaret. University of Florida; Estados Unidos. University Of Florida. Florida Museum Of History; Estados UnidosFil: Gibbs, Jason. University of Manitoba; CanadáFil: Campbell, Joshua W.. University of Florida; Estados Unidos. Usda Ars Northern Plains Agricultural Research Laboratory; Estados UnidosFil: Brokaw, Julia. University of Minnesota; Estados UnidosFil: Wilson, Julianna K.. Michigan State University; Estados UnidosFil: Mason, Keith. Michigan State University; Estados UnidosFil: Ward, Kimiora L.. University of California at Davis; Estados UnidosFil: Gundersen, Knute B.. Michigan State University; Estados UnidosFil: Bobiwash, Kyle. University of Manitoba; Canadá. University Fraser Simon; CanadáFil: Gut, Larry. Michigan State University; Estados UnidosFil: Rowe, Logan M.. Michigan State University; Estados UnidosFil: Boyle, Natalie K.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Williams, Neal M.. University of California at Davis; Estados UnidosFil: Chacoff, Natacha Paola. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentin

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved

    Retraining of interjoint arm coordination after stroke using robot-assisted time-independent functional training

    No full text
    We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted

    The CSC is required for complete radial spoke assembly and wild-type ciliary motility

    Get PDF
    Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous
    corecore