268 research outputs found
Avalanche to streamer transition in particle simulations
The avalanche to streamer transition is studied and illustrated in a particle
model. The results are similar to those of fluid models. However, when
super-particles are introduced, numerical artefacts become visible. This
underscores the need of models that are hybrid in space.Comment: 2 pages, 1 figur
Probing the AGN Unification Model at redshift z 3 with MUSE observations of giant Ly nebulae
A prediction of the classic active galactic nuclei (AGN) unification model is
the presence of ionisation cones with different orientations depending on the
AGN type. Confirmations of this model exist for present times, but it is less
clear in the early Universe. Here, we use the morphology of giant Ly
nebulae around AGNs at redshift z3 to probe AGN emission and therefore
the validity of the AGN unification model at this redshift. We compare the
spatial morphology of 19 nebulae previously found around type I AGNs with a new
sample of 4 Ly nebulae detected around type II AGNs. Using two
independent techniques, we find that nebulae around type II AGNs are more
asymmetric than around type I, at least at radial distances ~physical kpc
(pkpc) from the ionizing source. We conclude that the type I and type II AGNs
in our sample show evidence of different surrounding ionising geometries. This
suggests that the classical AGN unification model is also valid for
high-redshift sources. Finally, we discuss how the lack of asymmetry in the
inner parts (r30 pkpc) and the associated high values of the HeII to
Ly ratios in these regions could indicate additional sources of (hard)
ionizing radiation originating within or in proximity of the AGN host galaxies.
This work demonstrates that the morphologies of giant Ly nebulae can be
used to understand and study the geometry of high redshift AGNs on
circum-nuclear scales and it lays the foundation for future studies using much
larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA
Kinetic simulation of an extreme ultraviolet radiation driven plasma near a multilayer mirror
Future generation lithog. tools will use extreme UV radiation to enable the printing of sub-50 nm features on silicon wafers. The extreme UV radiation, coming from a pulsed discharge, photoionizes the low pressure background gas in the tool. A weakly ionized plasma is formed, which will be in contact with the optical components of the lithog. device. In the plasma sheath region ions will be accelerated towards the surfaces of multilayer mirrors. A self-consistent kinetic particle-in-cell model has been applied to describe a radiation driven plasma. The simulations predict the plasma parameters and notably the energy at which ions impact on the plasma boundaries. We have studied the influence of photoelectron emission from the mirror on the sheath dynamics and on the ion impact energy. Furthermore, the ion impact energy distribution has been convoluted with the formula of Yamamura and Tawara [At. Data Nucl. Data Tables 62, 149 (1996)] for the sputter yield to obtain the rate of phys. sputtering. The model predicts that the sputter rate is dominated by the presence of doubly ionized argon ions. [on SciFinder (R)
Deviations from the local field approximation in negative streamer heads
Negative streamer ionization fronts in nitrogen under normal conditions are
investigated both in a particle model and in a fluid model in local field
approximation. The parameter functions for the fluid model are derived from
swarm experiments in the particle model. The front structure on the inner scale
is investigated in a 1D setting, allowing reasonable run-time and memory
consumption and high numerical accuracy without introducing super-particles. If
the reduced electric field immediately before the front is >= 50kV/(cm bar),
solutions of fluid and particle model agree very well. If the field increases
up to 200kV/(cm bar), the solutions of particle and fluid model deviate, in
particular, the ionization level behind the front becomes up to 60% higher in
the particle model while the velocity is rather insensitive. Particle and fluid
model deviate because electrons with high energies do not yet fully run away
from the front, but are somewhat ahead. This leads to increasing ionization
rates in the particle model at the very tip of the front. The energy overshoot
of electrons in the leading edge of the front actually agrees quantitatively
with the energy overshoot in the leading edge of an electron swarm or avalanche
in the same electric field.Comment: The paper has 17 pages, including 15 figures and 3 table
Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity
Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens
Spatial coupling of particle and fluid models for streamers: where nonlocality matters
Particle models for streamer ionization fronts contain correct electron
energy distributions, runaway effects and single electron statistics.
Conventional fluid models are computationally much more efficient for large
particle numbers, but create too low ionization densities in high fields. To
combine their respective advantages, we here show how to couple both models in
space. We confirm that the discrepancies between particle and fluid fronts
arise from the steep electron density gradients in the leading edge of the
fronts. We find the optimal position for the interface between models that
minimizes computational effort and reproduces the results of a pure particle
model.Comment: 4 pages, 5 figure
- …