33 research outputs found
A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology.
Tumors develop within complex cell-to-cell interactions, with accessory cells playing a relevant role starting in the early phases of cancer progression. This event occurs in a three-dimensional (3D) environment, which to date, has been difficult to reproduce in vitro due to its complexity. While bi-dimensional cultures have generated substantial data, there is a progressive awareness that 3D culture strategies may rapidly increase the understanding of tumor development and be used in anti-cancer compound screening and for predicting response to new drugs utilizing personalized approaches. However, simple systems capable of rapidly rebuilding cancer tissues ex-vivo in 3D are needed and could be used for a variety of applications. Therefore, we developed a flat, handheld and versatile 3D cell culture bioreactor that can be loaded with tumor and/or normal cells in combination which can be monitored using a variety of read-outs. This biocompatible device sustained 3D growth of tumor cell lines representative of various cancers, such as pancreatic and breast adenocarcinoma, sarcoma, and glioblastoma. The cells repopulated the thin matrix which was completely separated from the outer space by two gas-permeable membranes and was monitored in real-time using both microscopy and luminometry, even after transportation. The device was tested in 3D cytotoxicity assays to investigate the anti-cancer potential of chemotherapy, biologic agents, and cell-based therapy in co-cultures. The addition of luciferase in target cancer cells is suitable for comparative studies that may also involve parallel in vivo investigations. Notably, the system was challenged using primary tumor cells harvested from lung cancer patients as an innovative predictive functional assay for cancer responsiveness to checkpoint inhibitors, such as nivolumab. This bioreactor has several novel features in the 3D-culture field of research, representing a valid tool useful for cancer investigations, drug screenings, and other toxicology approaches
An updated analysis of NN elastic scattering data to 1.6 GeV
An energy-dependent and set of single-energy partial-wave analyses of
elastic scattering data have been completed. The fit to 1.6~GeV has been
supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit,
we study the sensitivity of our analysis to the choice of coupling
constant. We also comment on the possibility of fitting data alone. These
results are compared with those found in the recent Nijmegen analyses. (Figures
may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/
Recommended from our members
Anthropogenic intensification of short-duration rainfall extremes
Short- duration (1-3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth's climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short- duration and long- duration (\textgreater1 day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (~7% K-1), while in some regions, increases in short- duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large- scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short- duration extremes has likely increased the incidence of flash flooding at local scales and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks
Effects of grapefruit juice on the pharmacokinetics of the enantiomers of methadone
BACKGROUND AND OBJECTIVES: Cytochrome P450 (CYP) 3A4 is the main CYP isozyme involved in methadone metabolism. We investigated the influence of grapefruit juice, which contains inhibitors of intestinal CYP3A, on the steady-state pharmacokinetics of methadone. METHODS: For 5 days, 8 patients undergoing methadone maintenance treatment received 200 mL water or grapefruit juice 30 minutes before and again together with their daily dose of methadone. Blood sampling for R-, S-, and R,S-methadone plasma determination was performed over a 24-hour period. CYP3A activity was determined by measuring the plasma 1'-hydroxymidazolam/midazolam ratio. RESULTS: A decrease in the midazolam ratio was measured in all patients after grapefruit juice (mean +/- SD before grapefruit juice, 9.3 +/- 5.9; mean +/- SD after grapefruit juice, 3.9 +/- 1.2; P <.05). Grapefruit juice led to a mean 17% increase in the area under the curve extrapolated to 24 hours for both enantiomers of methadone (range, 3% to 29% [P <.005]; range, -4% to 37% [P <.05]; and range, 1% to 32% [P <.01]; for R-, S-, and R,S-methadone, respectively). A similar increase in peak level and decrease in apparent clearance were measured with grapefruit juice, whereas time to peak level, terminal half-life, and apparent volume during the terminal phase of R-, S-, and R,S-methadone were not affected by grapefruit juice. No symptom of overmedication was either detected by the clinical staff or reported by the patients. CONCLUSIONS: Grapefruit juice administration is associated with a modest increase in methadone bioavailability, which is not expected to endanger patients. However, it cannot be excluded that a much stronger effect may occur in some patients, and thus grapefruit juice intake is not recommended during methadone maintenance treatment, in particular in patients initiating such a treatment
Gli interventi psicosociali con i familiari: dalla teoria alla pratica clinica
L'articolo descrive un'esperienza di lavoro psicoeducazionale con familiari di pazienti gravi in carico ad un Centro di Salute Mentale
Effect of age and gender on citalopram and desmethylcitalopram steady-state plasma concentrations in adults and elderly depressed patients.
The effect of aging on steady-state plasma concentrations of citalopram (CIT) and desmethylcitalopram (DCIT) was investigated in 128 depressive patients treated with 10-80 mg/day CIT. They were separated into three groups, with age up to 64 years (mean age+/-S.D.: 47+/-12 years; n=48), between 65 and 79 years (72+/-1 years; n=57), and from 80 years or older (84+/-1 years; n=23). Body mass index (BMI), renal and hepatic functions were similar in the three groups. A large interindividual variability of plasma levels of CIT (16-fold) and DCIT (12-fold) was measured for a given dose. The mean plasma levels of CIT corrected for a 20 mg daily dose were 55% higher in the very elderly (>=80 years) patients (65+/-30 ng/ml; p<0.001) and 38% higher in the elderly (65-79 years) patients (58+/-24 ng/ml; p<0.001) when compared to the adult patients (42+/-17 ng/ml). DCIT mean plasma level was 38% higher (p<0.05) in the group of very elderly patients (22+/-10 ng/ml) when compared to the adult patients (16+/-9 ng/ml). As a consequence, the mean plasma concentration of CIT+DCIT was 48% higher in the very elderly patients (86+/-36 ng/ml; p<0.001) and 33% higher in the elderly patients (77+/-28 ng/ml; p<0.001) when compared to the adult patients (58+/-21 ng/ml). Age correlated significantly with CIT (r=0.43, p<0.001), DCIT (r=0.28, p<0.01), and CIT+DCIT plasma levels (r=0.44, p<0.001), and thus accounts for 18% of the variability of CIT plasma levels, with no influence of gender. The recommended dose reduction of CIT in elderly patients seems therefore justified
Modulation of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) gene expression in isolated porcine hepatocytes perfused within a radial-flow bioreactor after low-temperature storing
Due to the scarcity of available human livers, porcine hepatocytes are currently being evaluated as a xenogeneic cell source for extracorporeal bioartificial liver (BAL). Hypothermic storage of isolated porcine hepatocytes could support stocking of cell-loaded bioreactors for BAL use and may provide bioreactors ready to be used at the patient's bedside. For the development of this technology, it is of utmost importance to ensure cell viability and differentiated functions after low-temperature storage and following warm reperfusion. We compared cell viability, functional activity and apoptosis in isolated porcine hepatocytes which were perfused within a radial-flow bioreactor (RFB), stored at 4 degrees C and then reperfused at 37 degrees C. RFBs were loaded with 8 x 10(9), > or = 90% viable hepatocytes at 37 degrees C for 3 h. RFBs were then flushed with 4 degrees C University of Wisconsin solution (UW) and subsequently stored for 24 h or 48 h. RFBs were then reperfused for 8 h with recirculating medium plus serum at 37 degrees C . Cytochrome P450 (CYP) activity was studied before and after cold storage by means of monoethylglycinexylide (MEGX) detection in the effluent medium, after repeated lidocaine injections. After reperfusion experiments, hepatocytes were harvested for total RNA isolation. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used in order to amplify specific mRNAs for Bcl-2 and Bax genes, by using appropriate primers; beta-actin primers were used as control. Total RNA was extracted by northern blotting analysis and for Bcl-2, Bax and beta-actin RNA messenger detection, RT-PCR amplification was used. Freshly isolated hepatocytes perfused into the RFB showed a progressive increase of MEGX while a loss in Bax expression was paralleled by an increase in Bcl-2 expression, in comparison to starting hepatocytes. After 4 degrees C storage and warm reperfusion, MEGX production was preserved in 24 h- and 48 h-stored bioreactors as well as a sharp increase of Bcl-2 and a decrease of Bax mRNAs. Our study suggests that refrigeration of hepatocyte-bioreactors is a suitable strategy to maintain both viability and function of isolated hepatocytes, for up to 48 h a time-length that is compatible with long-distance delivery of ready-to-use bioreactors
Author Correction: A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology (Scientific Reports, (2019), 9, 1, (7154), 10.1038/s41598-019-43613-9)
The original version of this Article contained an error in Affiliation 5, which was incorrectly given as ‘Department of Surgery, Oncology and Gastroenterology, University of Padova, Istituto Oncologico Veneto IRCCS, Padova, Italy’. The correct affiliation is listed below: Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy In addition, the original version of this Article omitted an affiliation for Pierfranco Conte. The correct affiliations for Pierfranco Conte are listed below: Medical Oncology 2, Veneto Institute of Oncology IOV, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy These errors have now been corrected in the HTML and PDF versions of this Article, and in the accompanying Supplementary Information