699 research outputs found

    Twenty years of LUNA

    Get PDF
    Abstract One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions responsible for the stellar luminosity and for the synthesis of the chemical elements. Deep underground in the Gran Sasso Laboratory the cross sections of the key reactions of the proton–proton chain and of the Carbon–Nitrogen–Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained by LUNA are reviewed, and their influence on the comprehension of the properties of the neutrino and of the Sun are discussed

    LUNA: Status and Prospects

    Full text link
    The essential ingredients of nuclear astrophysics are the thermonuclear reactions which shape the life and death of stars and which are responsible for the synthesis of the chemical elements in the Universe. Deep underground in the Gran Sasso Laboratory the cross sections of the key reactions responsible for the hydrogen burning in stars have been measured with two accelerators of 50 and 400 kV voltage right down to the energies of astrophysical interest. As a matter of fact, the main advantage of the underground laboratory is the reduction of the background. Such a reduction has allowed, for the first time, to measure relevant cross sections at the Gamow energy. The qualifying features of underground nuclear astrophysics are exhaustively reviewed before discussing the current LUNA program which is mainly devoted to the study of the Big-Bang nucleosynthesis and of the synthesis of the light elements in AGB stars and classical novae. The main results obtained during the study of reactions relevant to the Sun are also reviewed and their influence on our understanding of the properties of the neutrino, of the Sun and of the Universe itself is discussed. Finally, the future of LUNA during the next decade is outlined. It will be mainly focused on the study of the nuclear burning stages after hydrogen burning: helium and carbon burning. All this will be accomplished thanks to a new 3.5 MV accelerator able to deliver high current beams of proton, helium and carbon which will start running under Gran Sasso in 2019. In particular, we will discuss the first phase of the scientific case of the 3.5 MV accelerator focused on the study of 12^{12}C+12^{12}C and of the two reactions which generate free neutrons inside stars: 13^{13}C(α\alpha,n)16^{16}O and 22^{22}Ne(α\alpha,n)25^{25}Mg.Comment: To be published in Progress in Particle and Nuclear Physics 98C (2018) pp. 55-8

    The cosmological 7Li problem from a nuclear physics perspective

    Full text link
    The primordial abundance of 7Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect assumptions about the nuclear reaction cross sections relevant for BBN. To do this, we introduce an efficient method to calculate the changes in the 7Li abundance produced by arbitrary (temperature dependent) modifications of the nuclear reaction rates. Then, considering that 7Li is mainly produced from 7Be via the electron capture process 7Be + e -> 7Li + nu_e, we assess the impact of the various channels of 7Be destruction. Differently from previous analysis, we consider the role of unknown resonances by using a complete formalism which takes into account the effect of Coulomb and centrifugal barrier penetration and that does not rely on the use of the narrow-resonance approximation. As a result of this, the possibility of a nuclear physics solution to the 7Li problem is significantly suppressed. Given the present experimental and theoretical constraints, it is unlikely that the 7Be + n destruction rate is underestimated by the 2.5 factor required to solve the problem. We exclude, moreover, that resonant destruction in the channels 7Be + t and 7Be + 3He can explain the 7Li puzzle. New unknown resonances in 7Be + d and 7Be + alpha could potentially produce significant effects. Recent experimental results have ruled out such a possibility for 7Be+d. On the other hand, for the 7Be + alpha channel very favorable conditions are required. The possible existence of a partially suitable resonant level in 11C is studied in the framework of a coupled-channel model and the possibility of a direct measurement is considered.Comment: Final version, accepted for publication in JCA

    Search for correlations between solar flares and decay rate of radioactive nuclei

    Get PDF
    The deacay rate of three different radioactive sources 40K, 137Cs and natTh has been measured with NaI and Ge detectors. Data have been analyzed to search for possible variations in coincidence with the two strongest solar flares of the years 2011 and 2012. No significant deviations from standard expectation have been observed, with a few 10-4 sensitivity. As a consequence, we could not find any effect like that recently reported by Jenkins and Fischbach: a few per mil decrease in the decay rate of 54Mn during solar flares in December 2006.Comment: 5 pages, 3 figure

    Precise measurement of the 222Rn half-life: a probe to monitor the stability of radioactivity

    Get PDF
    We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the half-life of a short lifetime (days) source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years) source. In particular, we give a possible reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8*10^-5 precision. Finally, we provide the most precise value for the 222Rn half-life: 3.82146(16){stat}(4){syst} days.Comment: Accepted for publication in Physics Letters B, 6 pages, 6 figure

    Electromagnetic Properties of Neutrinos

    Get PDF
    In this review we discuss the main theoretical aspects and experimental effects of neutrino electromagnetic properties. We start with a general description of the electromagnetic form factors of Dirac and Majorana neutrinos. Then, we discuss the theory and phenomenology of the magnetic and electric dipole moments, summarizing the experimental results and the theoretical predictions. We discuss also the phenomenology of a neutrino charge radius and radiative decay. Finally, we describe the theory of neutrino spin and spin-flavor precession in a transverse magnetic field and we summarize its phenomenological applications.Comment: 39 pages. Invited review for the special issue of Advances in High Energy Physics on Neutrino Physic

    LUNA: Nuclear Astrophysics Deep Underground

    Full text link
    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The main results obtained by LUNA in the last twenty years are reviewed, and their influence on the comprehension of the properties of the neutrino, of the Sun and of the Universe itself are discussed. Future directions of underground nuclear astrophysics towards the study of helium and carbon burning and of stellar neutron sources in stars are pointed out.Comment: Invited review, submitted to Annu. Rev. Nucl. Part. Scienc

    Search for time modulations in the decay rate of 40K and 232Th

    Full text link
    Time modulations at per mil level have been reported to take place in the decay constant of about 15 nuclei with period of one year (most cases) but also of about one month or one day. In this paper we give the results of the activity measurement of a 40K source and a 232Th one. The two experiments have been done at the Gran Sasso Laboratory during a period of about 500 days, above ground (40K) and underground (232Th) with a target sensitivity of a few parts over 10^5. We also give the results of the activity measurement at the time of the X-class solar flares which took place in May 2013. Briefly, our measurements do not show any evidence of unexpected time dependence in the decay rate of 40K and 232Th.Comment: version accepted for publication (Astroparticle Physics

    The relevance of the vertex bremsstrahlung photon detection in the electron-neutrino (antineutrino) electron scattering experiments at low energy

    Full text link
    We discuss the size of the electron-antineutrino electron into electron-antineutrino electron cross section reduction due to the rejection of the events with a vertex bremsstrahlung photon above a certain energy in the final state. In particular we analyze the effect in experiments designed to detect the low energy electron-antineutrino and electron-neutrino from a nuclear reactor and from the Sun. We find that such reduction has to be considered in a relatively high statistic reactor experiment, while it is negligible for pp and 7Be solar neutrino detection.Comment: Plain Latex plus six postscript figures not included in the tex

    Sub MeV Particles Detection and Identification in the MUNU detector ((1)ISN, IN2P3/CNRS-UJF, Grenoble, France, (2)Institut de Physique, Neuch\^atel, Switzerland, (3) INFN, Padova Italy, (4) Physik-Institut, Z\"{u}rich, Switzerland)

    Full text link
    We report on the performance of a 1 m3^{3} TPC filled with CF4_{4} at 3 bar, immersed in liquid scintillator and viewed by photomultipliers. Particle detection, event identification and localization achieved by measuring both the current signal and the scintillation light are presented. Particular features of α\alpha particle detection are also discussed. Finally, the 54{54}Mn photopeak, reconstructed from the Compton scattering and recoil angle is shown.Comment: Latex, 19 pages, 20 figure
    • …
    corecore