594 research outputs found
Color Synesthesia
Encyclopedia entry on color synesthesia with cognitive/neurscientific focu
Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results
Earlier measurements of the masses and radii of the detached eclipsing binary
V20 in the open cluster NGC 6791 were accurate enough to demonstrate that there
are significant differences between current stellar models. Here we improve on
those results and add measurements of two additional detached eclipsing
binaries, the cluster members V18 and V80. The enlarged sample sets much
tighter constraints on the properties of stellar models than has hitherto been
possible, thereby improving both the accuracy and precision of the cluster age.
We employed (i) high-resolution UVES spectroscopy of V18, V20 and V80 to
determine their spectroscopic effective temperatures, [Fe/H] values, and
spectroscopic orbital elements, and (ii) time-series photometry from the Nordic
Optical Telescope to obtain the photometric elements. The masses and radii of
the V18 and V20 components are found to high accuracy, with errors on the
masses in the range 0.27-0.36% and errors on the radii in the range 0.61-0.92%.
V80 is found to be magnetically active, and more observations are needed to
determine its parameters accurately. The metallicity of NGC 6791 is measured
from disentangled spectra of the binaries and a few single stars to be [Fe/H]=
+0.29 \pm 0.03 (random) \pm 0.07 (systematic). The cluster reddening and
apparent distance modulus are found to be E(B - V) = 0.160 \pm 0.025 and (m -
M)V = 13.51 \pm 0.06 . A first model comparison shows that we can constrain the
helium content of the NGC 6791 stars, and thus reach a more accurate age than
previously possible. It may be possible to constrain additional parameters, in
particular the C, N, and O abundances. This will be investigated in paper II.Comment: Accepted for publication in A&
NGC 6819: testing the asteroseismic mass scale, mass loss, and evidence for products of non-standard evolution
We present an extensive peakbagging effort on Kepler data of 50 red
giant stars in the open star cluster NGC 6819. By employing sophisticated
pre-processing of the time series and Markov Chain Monte Carlo techniques we
extracted individual frequencies, heights and linewidths for hundreds of
oscillation modes.
We show that the "average" asteroseismic parameter , derived
from these, can be used to distinguish the stellar evolutionary state between
the red giant branch (RGB) stars and red clump (RC) stars.
Masses and radii are estimated using asteroseismic scaling relations, both
empirically corrected to obtain self-consistency as well as agreement with
independent measures of distance, and using updated theoretical corrections.
Remarkable agreement is found, allowing the evolutionary state of the giants to
be determined exclusively from the empirical correction to the scaling
relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be
and ,
respectively. The difference is
almost insensitive to systematics, suggesting very little RGB mass loss, if
any.
Stars that are outliers relative to the ensemble reveal overmassive members
that likely evolved via mass-transfer in a blue straggler phase. We suggest
that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase
that experienced very high mass-loss during its evolution. Such over- and
undermassive stars need to be considered when studying field giants, since the
true age of such stars cannot be known and there is currently no way to
distinguish them from normal stars.Comment: 21 pages, 11 figure
The [Y/Mg] clock works for evolved solar metallicity stars
Previously [Y/Mg] has been proven to be an age indicator for solar twins.
Here, we investigate if this relation also holds for helium-core-burning stars
of solar metallicity. High resolution and high signal-to-noise ratio (S/N)
spectroscopic data of stars in the helium-core-burning phase have been obtained
with the FIES spectrograph on the NOT 2.56m telescope and the HIRES
spectrograph on the Keck I 10 m telescope. They have been analyzed to determine
the chemical abundances of four open clusters with close to solar metallicity;
NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent
widths of spectral lines using ATLAS9 model atmospheres with parameters
determined from the excitation and ionization balance of Fe lines. Results from
asteroseismology and binary studies were used as priors on the atmospheric
parameters, where especially the is determined to much higher
precision than what is possible with spectroscopy. It is confirmed that the
four open clusters are close to solar metallicity and they follow the [Y/Mg]
vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also
works for giant stars in the helium-core burning phase, which vastly increases
the possibilities to estimate the age of stars not only in the solar
neighborhood, but in large parts of the Galaxy, due to the brighter nature of
evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&
The Invisible Thin Red Line
The aim of this paper is to argue that the adoption of an unrestricted principle of bivalence is compatible with a metaphysics that (i) denies that the future is real, (ii) adopts nomological indeterminism, and (iii) exploits a branching structure to provide a semantics for future contingent claims. To this end, we elaborate what we call Flow Fragmentalism, a view inspired by Kit Fine (2005)’s non-standard tense realism, according to which reality is divided up into maximally coherent collections of tensed facts. In this way, we show how to reconcile a genuinely A-theoretic branching-time model with the idea that there is a branch corresponding to the thin red line, that is, the branch that will turn out to be the actual future history of the world
KIC 8410637: a 408-day period eclipsing binary containing a pulsating red giant
Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement
of masses and radii of ther component stars. If at least one of the stars has
evolved off the main sequence (MS), the masses and radii give a strict
constraint on the age of the stars. Several dEBs containing a bright K giant
and a fainter MS star have been discovered by the Kepler satellite. The mass
and radius of a red giant (RG) star can also be derived from its asteroseismic
signal. The parameters determined in this way depend on stellar models and may
contain systematic errors. It is important to validate the asteroseismically
determined mass and radius with independent methods. This can be done when
stars are members of stellar clusters or members of dEBs. KIC 8410637 consists
of an RG and an MS star. The aim is to derive accurate masses and radii for
both components and provide the foundation for a strong test of the
asteroseismic method and the accuracy of the deduced mass, radius and age. We
analyse high-resolution spectra from three different spectrographs. We also
calculate a fit to the Kepler light curve and use ground-based photometry to
determine the flux ratios between the component stars in the BVRI passbands. We
measured the masses and radii of the stars in the dEB, and the classical
parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry.
The RG component of KIC 8410637 is most likely in the core helium-burning red
clump phase of evolution and has an age and composition very similar to the
stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should
therefore be similar to the mass of RGs in NGC 6819, thus lending support to
the most up-to-date version of the asteroseismic scaling relations. This is the
first direct measurement of both mass and radius for an RG to be compared with
values for RGs from asteroseismic scaling relations.Comment: Accepted 20.6.2013 for publication in Astronomy and Astrophysic
- …