366 research outputs found

    The loss-limited electron energy in SN 1006: effects of the shock velocity and of the diffusion process

    Full text link
    The spectral shape of the synchrotron X-ray emission from SN 1006 reveals the fundamental role played by radiative losses in shaping the high-energy tail of the electron spectrum. We analyze data from the XMM-Newton SN 1006 Large Program and confirm that in both nonthermal limbs the loss-limited model correctly describes the observed spectra. We study the physical origin of the observed variations of the synchrotron cutoff energy across the shell. We investigate the role played by the shock velocity and by the electron gyrofactor. We found that the cutoff energy of the syncrotron X-ray emission reaches its maximum value in regions where the shock has experienced its highest average speed. This result is consistent with the loss-limited framework. We also find that the electron acceleration in both nonthermal limbs of SN 1006 proceeds close to the Bohm diffusion limit, the gyrofactor being in the range 1.5-4. We finally investigate possible explanations for the low values of cutoff energy measured in thermal limbs.Comment: Accepted for publication in Astronomische Nachrichten. Proceedings of the XMM-Newton Science Workshop 201

    Generating data with prescribed power spectral density

    Full text link

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    The shape of the cutoff in the synchrotron emission of SN 1006 observed with XMM-Newton

    Get PDF
    International audienceContext. Synchrotron X-ray emission from the rims of young supernova remnants allows us to study the high-energy tail of the electrons accelerated at the shock front.Aims. The analysis of X-ray spectra can provide information on the physical mechanisms that limit the energy achieved by the electrons in the acceleration process. We aim at verifying whether the maximum electron energy in SN 1006 is limited by synchrotron losses and at obtaining information on the shape of the cutoff in the X-ray synchrotron emission. Methods. We analyzed the deep observations of the XMM-Newton SN 1006 Large Program. We performed spatially resolved spectral analysis of a set of small regions in the nonthermal limbs and studied the X-ray spectra by adopting models that assume different electron spectra.Results. We found out that a loss-limited model provides the best fit to all the spectra and this indicates that the shape of the cutoff in the electron momentum (p) distribution has the form exp [ − (p/pcut)2]. We also detected residual thermal emission from shocked ambient medium and confirmed the reliability of previous estimates of the post-shock density.Conclusions. Our results indicate that radiative losses play a fundamental role in shaping the electron spectrum in SN 1006

    Alternative axiomatics and complexity of deliberative STIT theories

    Full text link
    We propose two alternatives to Xu's axiomatization of the Chellas STIT. The first one also provides an alternative axiomatization of the deliberative STIT. The second one starts from the idea that the historic necessity operator can be defined as an abbreviation of operators of agency, and can thus be eliminated from the logic of the Chellas STIT. The second axiomatization also allows us to establish that the problem of deciding the satisfiability of a STIT formula without temporal operators is NP-complete in the single-agent case, and is NEXPTIME-complete in the multiagent case, both for the deliberative and the Chellas' STIT.Comment: Submitted to the Journal of Philosophical Logic; 13 pages excluding anne

    The northwestern ejecta knot in SN 1006

    Get PDF
    International audienceAims. We want to probe the physics of fast collision-less shocks in supernova remnants. We are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with regards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods. This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with the currently best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emission profile of the remnant with the response matrix.Results. The line broadening was measured as σe = 2.4 ± 0.3 eV, corresponding to an oxygen temperature of 275-63+72 keV. From the EPIC spectra we obtain an electron temperature of 1.35 ± 0.10 keV. The difference in temperature between the species provides further evidence of non-equilibration of temperatures in a shock. In addition, we find evidence of a bow shock that emits X-ray synchrotron radiation, which is at odds with the general idea that because of the magnetic field orientation only in the NE and SW region, X-ray synchrotron radiation should be emitted. We find an unusual Hα and X-ray synchrotron geometry, in that the Hα emission peaks downstream of the synchrotron emission. This may be an indication of a peculiar Hα shock in which the density is lower and the neutral fraction is higher than in other supernova remnants, resulting in a peak in Hα emission further downstream of the shock

    Automatic Identification of Time-Series Models From Long Autoregressive Models

    Full text link

    X-raying hadronic acceleration at the SN 1006 shock front

    Get PDF
    Shock fronts in young supernova remnants are the best candidates for being sites of cosmic rays acceleration up to a few PeV, though conclusive experimental evidence is still lacking. Theoretical models predict that particle acceleration can modify the post-shock properties, e. g. by increasing the plasma density. We exploited the Large Program of deep XMM-Newton observations of SN 1006 to verify this prediction. We focused on the rim of the supernova remnant and by performing spatially resolved spectral analysis, we found that the shock compression ratio significantly increases in regions where particle acceleration is efficient, in agreement with expectations. Our results provide observational evidence for the presence of hadron acceleration processes at the SN 1006 shock front

    Order selection for vector autoregressive models

    Full text link

    High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water

    Get PDF
    We investigate and discuss the proton conductivity properties of the cyanide-bridged metal–organic framework (MOF) [Nd(mpca)2Nd(H2O)6Mo(CN)8]·nH2O (where mpca is 5-methyl-2-pyrazinecarboxylate). This MOF is one of an exciting class of cyanide-bridged materials that can combine porosity with magnetism, luminescence, and proton conductivity. Specifically, we show that this material features highly hydrophilic open channels filled with water molecules. They enable a high proton conductivity, as much as 10−3 S cm−1. A rich hydrogen-bonding network, formed by the ligands' carboxylate groups with both coordinated and lattice water molecules, facilitates this high proton conductivity. Combined thermogravimetric studies, FTIR spectroscopy and PXRD analysis show that upon heating at 80 °C, the lattice water molecules are removed without any change in the framework. Further heating at 130 °C results in a partial removal of the coordinated water molecules, while still retaining the original framework. These activated MOFs shows an increasing conductivity from ∌10−9 S cm−1 to ∌10−3 S cm−1 when the relative humidity increases from 0% to 98%. Our studies show that the increase in proton conductivity is correlated with the re-hydration of the framework with lattice water molecules. The Arrhenius activation energy for the proton conductivity process is low (Ea = 37 kJ mol−1), indicating that the protons “hop” through the channels following the Grotthuss mechanism. The fact that this MOF is remarkably stable both under high humidity conditions and at relatively high temperatures (up to 130 °C) makes it a good candidate for real-life applications
    • 

    corecore