83 research outputs found
The duration of immunity in dogs following the single-injection method of anti-rabic vaccination
Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors
Liquid argon-based scintillation detectors are important for dark matter
searches and neutrino physics. Argon scintillation light is in the vacuum
ultraviolet region, making it hard to be detected by conventional means.
Polyethylene naphthalate (PEN), an optically transparent thermoplastic
polyester commercially available as large area sheets or rolls, is proposed as
an alternative wavelength shifter to the commonly-used tetraphenyl butadiene
(TPB). By combining the existing literature data and spectrometer measurements
relative to TPB, we conclude that the fluorescence yield and timing of both
materials may be very close. The evidence collected suggests that PEN is a
suitable replacement for TPB in liquid argon neutrino detectors, and is also a
promising candidate for dark matter detectors. Advantages of PEN are discussed
in the context of scaling-up existing technologies to the next generation of
very large ktonne-scale detectors. Its simplicity has a potential to facilitate
such scale-ups, revolutionizing the field.Comment: 6 pages, 3 figure
In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum
efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and
is of significant interest for future dark matter and neutrino experiments
where high signal yields are needed.
We report on the methods developed for in-situ characterization and
monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of
typical measured single-photoelectron charge distributions, correlated noise
(afterpulsing), dark noise, double, and late pulsing characteristics. The
characterization is performed during the detector commissioning phase using
laser light injected through a light diffusing sphere and during normal
detector operation using LED light injected through optical fibres
Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1
The DEAP-1 low-background liquid argon detector was used to measure
scintillation pulse shapes of electron and nuclear recoil events and to
demonstrate the feasibility of pulse-shape discrimination (PSD) down to an
electron-equivalent energy of 20 keV.
In the surface dataset using a triple-coincidence tag we found the fraction
of beta events that are misidentified as nuclear recoils to be (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil
acceptance of at least 90%, with 4% systematic uncertainty on the absolute
energy scale. The discrimination measurement on surface was limited by nuclear
recoils induced by cosmic-ray generated neutrons. This was improved by moving
the detector to the SNOLAB underground laboratory, where the reduced background
rate allowed the same measurement with only a double-coincidence tag.
The combined data set contains events. One of those, in the
underground data set, is in the nuclear-recoil region of interest. Taking into
account the expected background of 0.48 events coming from random pileup, the
resulting upper limit on the electronic recoil contamination is
(90% C.L.) between 44-89 keVee and for a nuclear recoil
acceptance of at least 90%, with 6% systematic uncertainty on the absolute
energy scale.
We developed a general mathematical framework to describe PSD parameter
distributions and used it to build an analytical model of the distributions
observed in DEAP-1. Using this model, we project a misidentification fraction
of approx. for an electron-equivalent energy threshold of 15 keV for
a detector with 8 PE/keVee light yield. This reduction enables a search for
spin-independent scattering of WIMPs from 1000 kg of liquid argon with a
WIMP-nucleon cross-section sensitivity of cm, assuming
negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
Updated and novel limits on double beta decay and dark matter-induced processes in platinum
A 510 day long-term measurement of a 45.3 g platinum foil acting as the
sample and high voltage contact in an ultra-low-background high purity
germanium detector was performed at Laboratori Nazionali del Gran Sasso
(Italy). The data was used for a detailed study of double beta decay modes in
natural platinum isotopes. Limits are produced in the range
a for double beta decay to excited states (90%
C.L.) confirming, and partially extending existing limits. The highest
sensitivity, greater than a, was achieved for the and resonant
modes of double electron capture involving KL shell electrons.
Additionally, novel limits for inelastic dark matter scattering on Pt
are placed up to mass splittings of approximately 500 keV. We analyze several
techniques to extend the sensitivity and propose a few approaches for future
medium-scale experiments with platinum-group elements.Comment: 15 pages, 3 figure
- …
