16 research outputs found

    Counterfactual Explanation via Search in Gaussian Mixture Distributed Latent Space

    Full text link
    Counterfactual Explanations (CEs) are an important tool in Algorithmic Recourse for addressing two questions: 1. What are the crucial factors that led to an automated prediction/decision? 2. How can these factors be changed to achieve a more favorable outcome from a user's perspective? Thus, guiding the user's interaction with AI systems by proposing easy-to-understand explanations and easy-to-attain feasible changes is essential for the trustworthy adoption and long-term acceptance of AI systems. In the literature, various methods have been proposed to generate CEs, and different quality measures have been suggested to evaluate these methods. However, the generation of CEs is usually computationally expensive, and the resulting suggestions are unrealistic and thus non-actionable. In this paper, we introduce a new method to generate CEs for a pre-trained binary classifier by first shaping the latent space of an autoencoder to be a mixture of Gaussian distributions. CEs are then generated in latent space by linear interpolation between the query sample and the centroid of the target class. We show that our method maintains the characteristics of the input sample during the counterfactual search. In various experiments, we show that the proposed method is competitive based on different quality measures on image and tabular datasets -- efficiently returns results that are closer to the original data manifold compared to three state-of-the-art methods, which are essential for realistic high-dimensional machine learning applications.Comment: XAI workshop of IJCAI 202

    Interpretable Distribution-Invariant Fairness Measures for Continuous Scores

    Full text link
    Measures of algorithmic fairness are usually discussed in the context of binary decisions. We extend the approach to continuous scores. So far, ROC-based measures have mainly been suggested for this purpose. Other existing methods depend heavily on the distribution of scores, are unsuitable for ranking tasks, or their effect sizes are not interpretable. Here, we propose a distributionally invariant version of fairness measures for continuous scores with a reasonable interpretation based on the Wasserstein distance. Our measures are easily computable and well suited for quantifying and interpreting the strength of group disparities as well as for comparing biases across different models, datasets, or time points. We derive a link between the different families of existing fairness measures for scores and show that the proposed distributionally invariant fairness measures outperform ROC-based fairness measures because they are more explicit and can quantify significant biases that ROC-based fairness measures miss. Finally, we demonstrate their effectiveness through experiments on the most commonly used fairness benchmark datasets

    Leveraging Model Inherent Variable Importance for Stable Online Feature Selection

    Full text link
    Feature selection can be a crucial factor in obtaining robust and accurate predictions. Online feature selection models, however, operate under considerable restrictions; they need to efficiently extract salient input features based on a bounded set of observations, while enabling robust and accurate predictions. In this work, we introduce FIRES, a novel framework for online feature selection. The proposed feature weighting mechanism leverages the importance information inherent in the parameters of a predictive model. By treating model parameters as random variables, we can penalize features with high uncertainty and thus generate more stable feature sets. Our framework is generic in that it leaves the choice of the underlying model to the user. Strikingly, experiments suggest that the model complexity has only a minor effect on the discriminative power and stability of the selected feature sets. In fact, using a simple linear model, FIRES obtains feature sets that compete with state-of-the-art methods, while dramatically reducing computation time. In addition, experiments show that the proposed framework is clearly superior in terms of feature selection stability.Comment: To be published in the Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020

    Causal Fairness-Guided Dataset Reweighting using Neural Networks

    Full text link
    The importance of achieving fairness in machine learning models cannot be overstated. Recent research has pointed out that fairness should be examined from a causal perspective, and several fairness notions based on the on Pearl's causal framework have been proposed. In this paper, we construct a reweighting scheme of datasets to address causal fairness. Our approach aims at mitigating bias by considering the causal relationships among variables and incorporating them into the reweighting process. The proposed method adopts two neural networks, whose structures are intentionally used to reflect the structures of a causal graph and of an interventional graph. The two neural networks can approximate the causal model of the data, and the causal model of interventions. Furthermore, reweighting guided by a discriminator is applied to achieve various fairness notions. Experiments on real-world datasets show that our method can achieve causal fairness on the data while remaining close to the original data for downstream tasks.Comment: To be published in the proceedings of 2023 IEEE International Conference on Big Data (IEEE BigData 2023

    Explanation Shift: Investigating Interactions between Models and Shifting Data Distributions

    Full text link
    As input data distributions evolve, the predictive performance of machine learning models tends to deteriorate. In practice, new input data tend to come without target labels. Then, state-of-the-art techniques model input data distributions or model prediction distributions and try to understand issues regarding the interactions between learned models and shifting distributions. We suggest a novel approach that models how explanation characteristics shift when affected by distribution shifts. We find that the modeling of explanation shifts can be a better indicator for detecting out-of-distribution model behaviour than state-of-the-art techniques. We analyze different types of distribution shifts using synthetic examples and real-world data sets. We provide an algorithmic method that allows us to inspect the interaction between data set features and learned models and compare them to the state-of-the-art. We release our methods in an open-source Python package, as well as the code used to reproduce our experiments.Comment: arXiv admin note: text overlap with arXiv:2210.1236

    Bias in data-driven artificial intelligence systems - An introductory survey

    Get PDF
    Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well‐grounded in a legal frame. In this survey, we focus on data‐driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth
    corecore