30 research outputs found

    Histone deacetylase inhibitors in multiple myeloma

    Get PDF
    Novel drugs such as bortezomib and high-dose chemotherapy combined with stem cell transplantation improved the outcome of multiple myeloma patients in the past decade. However, multiple myeloma often remains incurable due to the development of drug resistance governed by the bone marrow microenvironment. Therefore targeting new pathways to overcome this resistance is needed. Histone deacetylase (HDAC) inhibitors represent a new class of anti-myeloma agents. Inhibiting HDACs results in histone hyperacetylation and alterations in chromatine structure, which, in turn, cause growth arrest differentiation and/or apoptosis in several tumor cells. Here we summarize the molecular actions of HDACi as a single agent or in combination with other drugs in different in vitro and in vivo myeloma models and in (pre-)clinical trials

    Effect of sample dilution on serum free light chain concentration by immunonephelometric assay

    No full text
    Free light chains (FLC) are useful biomarkers in the assessment of plasma cell disorders. Concerns have been raised about some technical aspects of the assay. This report examined the occurrence of dilution anomalies and/or antigen excess.status: publishe

    Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells.

    No full text
    Homing of multiple myeloma (MM) cells to the bone marrow (BM) requires transendothelial migration. In the present work we tested whether monocyte chemoattractant protein-1 (MCP-1) and CCR2, the high affinity receptor for MCP-1, are involved in this process. Murine 5T2 and 5T33MM cell lines were selected as source of MM cells and STR4, 10 and 12 of BM endothelial cells (BMEC). RT-PCR demonstrated transcripts for MCP-1 in BMEC and ELISA the presence of MCP-1 protein in culture medium. RNase protection assay showed mRNA expression for CCR2, and FACS analysis the presence of CCR2 protein on the MM cells. EC conditioned medium induced chemoattraction of MM cells, a phenomenon inhibited by anti-MCP-1 antibodies. In conclusion, MM cells express CCR2 and are attracted by MCP-1 secreted by BMEC. We suggest that local MCP-1 production by BMEC is one of the mechanisms involved in homing of myeloma cells to the BM.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Liquid Biopsy-Derived DNA Sources as Tools for Comprehensive Mutation Profiling in Multiple Myeloma: A Comparative Study

    No full text
    The analysis of bone marrow (BM) samples in multiple myeloma (MM) patients can lead to the underestimation of the genetic heterogeneity within the tumor. Blood-derived liquid biopsies may provide a more comprehensive approach to genetic characterization. However, no thorough comparison between the currently available circulating biomarkers as tools for mutation profiling in MM has been published yet and the use of extracellular vesicle-derived DNA for this purpose in MM has not yet been investigated. Therefore, we collected BM aspirates and blood samples in 30 patients with active MM to isolate five different DNA types, i.e., cfDNA, EV-DNA, BM-DNA and DNA isolated from peripheral blood mononucleated cells (PBMNCs-DNA) and circulating tumor cells (CTC-DNA). DNA was analyzed for genetic variants with targeted gene sequencing using a 165-gene panel. After data filtering, 87 somatic and 39 germline variants were detected among the 149 DNA samples used for sequencing. cfDNA showed the highest concordance with the mutation profile observed in BM-DNA and outperformed EV-DNA, CTC-DNA and PBMNCs-DNA. Of note, 16% of all the somatic variants were only detectable in circulating biomarkers. Based on our analysis, cfDNA is the preferable circulating biomarker for genetic characterization in MM and its combined use with BM-DNA allows for comprehensive mutation profiling in MM

    Liquid Biopsy-Derived DNA Sources as Tools for Comprehensive Mutation Profiling in Multiple Myeloma: A Comparative Study

    No full text
    The analysis of bone marrow (BM) samples in multiple myeloma (MM) patients can lead to the underestimation of the genetic heterogeneity within the tumor. Blood-derived liquid biopsies may provide a more comprehensive approach to genetic characterization. However, no thorough comparison between the currently available circulating biomarkers as tools for mutation profiling in MM has been published yet and the use of extracellular vesicle-derived DNA for this purpose in MM has not yet been investigated. Therefore, we collected BM aspirates and blood samples in 30 patients with active MM to isolate five different DNA types, i.e. cfDNA, EV-DNA, BM-DNA and DNA isolated from peripheral blood mononucleated cells (PBMNCs-DNA) and circulating tumor cells (CTC-DNA). DNA was analyzed for genetic variants with targeted gene sequencing using a 165-gene panel. After data filtering, 87 somatic and 39 germline variants were detected among the 149 DNA samples used for sequencing. cfDNA showed the highest concordance with the mutation profile observed in BM-DNA and outperformed EV-DNA, CTC-DNA and PBMNCs-DNA. Of note, 16% of all the somatic variants were only detectable in circulating biomarkers. Based on our analysis, cfDNA is the preferable circulating biomarker for genetic characterization in MM and its combined use with BM-DNA allows for comprehensive mutation profiling in MM.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore