35 research outputs found

    Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches

    Get PDF
    Background. Ductal carcinoma in situ (DCIS) can be a precursor to invasive breast cancer. Since the advent of screening mammography in the 1980’s, the incidence of DCIS has increased dramatically. The value of screen detection and treatment of DCIS, however, is a matter of controversy, as it is unclear the extent to which detection and treatment of DCIS prevents invasive disease and reduces breast cancer mortality. The aim of this paper is to provide an overview of existing Cancer Intervention and Surveillance Modelling Network (CISNET) modeling approaches for the natural history of DCIS, and to compare these to other modeling approaches reported in the literature. Design. Five of the 6 CISNET models currently include DCIS. Most models assume that some, but not all, lesions progress to invasive cancer. The natural history of DCIS cannot be directly observed and the CISNET models differ in their assumptions and in the data sources used to estimate the DCIS model parameters. Results. These model differences translate into variation in outcomes, such as the amount of overdiagnosis of DCIS, with estimates ranging from 34% to 72% for biennial screening from ages 50 to 74 y. The other models described in the literature also report a large range in outcomes, with progression rates varying from 20% to 91%. Limitations. DCIS grade was not yet included in the CISNET models. Conclusion. In the future, DCIS data by grade from active surveillance trials, the development of predictive markers of progression probability, and evidence from other screening modalities, such as tomosynthesis, may be used to inform and improve the models’ representation of DCIS, and might lead to convergence of the model estimates. Until then, the CISNET model results consistently show a considerable amount of overdiagnosis of DCIS, supporting the safety and value of observational trials for low-risk DCIS

    Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

    Get PDF
    Fracture properties of Ti-based amorphous alloys containing ductile beta dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 mu m, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPaaem within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites. (C) The Minerals, Metals & Materials Society and ASM International 2015ope

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    How does lateral tilting affect the internal strains in the sacral region of bed ridden patients? — A contribution to pressure ulcer prevention

    No full text
    Background: Repositioning of individuals with reduced mobility and at risk of pressure ulcers is an essential preventive step. Manual or automatic lateral tilting is a way of doing this and the international guidelines propose a 30° to 40° side lying position. The goal of the present study was to determine the internal strains in individuals lying in a supine position and during tilting.Methods: Based on magnetic resonance imaging (MRI) of the sacral area of human volunteers, subject specific finite element models were developed. By comparing calculated contours of the skin, fat and muscle with MRI measurements on a flat surface the models were validated. A parameter study was performed to assess the sensitivity of the model for changes in material properties. Simulations were performed at tilting angles of volunteers between 0° and 45°.Findings: Subjects in a supine position or tilted have the highest strains in the muscle and fat. Tilting does affect the strain distribution, taking away the highest peak strains. There seems to exist an optimal tilting angle between 20° and 30°, which may vary depending on factors such as BMI of the subject and is in the current paper investigated only for the sacrum.Interpretation: The study shows that tilting indeed has a significant, positive influence on internal strains, which is important for the prevention of deep tissue injury. Additional studies are needed to draw conclusions about the greater trochanter area and the tissues around the shoulder

    A numerical study to analyse the risk for pressure ulcer development on a spine board

    No full text
    The prototype comfort board is able to reduce the risk for deformation damage and thus reduces the risk of developing pressure ulcer

    Chronic pancreas allograft rejection followed by successful HLA-incompatible islet alloautotransplantation: a novel strategy?

    Get PDF
    The purpose of pancreas or islet transplantation is to restore glycemic control in order to mitigate diabetes-related complications and prevent severe hypoglycemia. Complications from chronic pancreas allograft rejection may lead to transplantectomy, even when the endocrine function remains preserved. We present first evidence of a successful HLA incompatible islet re-transplantation with islets isolated from a rejecting pancreas allograft after simultaneous kidney pancreas transplantation. The pancreas allograft was removed because of progressively painful pancreatic panniculitis from clinically uncontrolled chronic rejection. The endocrine function was preserved. Induction treatment for this “islet alloautotransplantation” consisted of plasmapheresis, IVIg and alemtuzumab. At 1 year, the patient retained islet graft function with good glycemic control and absence of severe hypoglycemia, despite persistent low-grade HLA donor-specific antibodies. His panniculitis had resolved completely. In our point of view, islet alloautotransplantation derived from a chronically rejecting pancreas allograft is a potential option to salvage (partial) islet function, despite preformed donor-specific antibodies, in order to maintain stable glycemic control. Thereby it protects against severe hypoglycemia, and it potentially mitigates kidney graft dysfunction and other diabetes-related complications in patients with continued need for immunosuppression and who are otherwise difficult to retransplant. Metabolic health: pathophysiological trajectories and therap

    Radiation-induced breast cancer incidence and mortality from digital mammography screening a modeling study

    No full text
    Background: Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. Objective: To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. Design: 2 simulation-modeling approaches. Setting: U.S. population. Patients: Women aged 40 to 74 years. Intervention: Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Measurements: Lifetime breast cancer deaths averted (bene-fits) and radiation-induced breast cancer incidence and mortality (harms) per 100 000 women screened. Results: Annual screening of 100 000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100 000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100 000 women) than other women (113 cancer cases and 15 deaths per 100 000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Limitation: Life-years lost from radiation-induced breast cancer could not be estimated. Conclusion: Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Primary Funding Source: Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute
    corecore