122 research outputs found

    The Structure of Dark Matter Haloes in Dwarf Galaxies

    Get PDF
    Recent observations indicate that dark matter haloes have flat central density profiles. Cosmological simulations with non-baryonic dark matter predict however self similar haloes with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter haloes of dwarf spiral galaxies represent a one parameter family with self similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the haloes formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.Comment: uuencoded Z-compressed postscript file, 10 pages, 3 figures included, to appear in ApJ Letter

    NGC 4138 - A Case Study in Counterrotating Disk Formation

    Get PDF
    The Sa(r) galaxy NGC 4138 has been recently found to contain an extensive counterrotating disk which appears to be still forming. Up to a third of the stars in the disk system may be on retrograde orbits. A counterrotating ring of H II regions, along with extended counterrotating H I gas, suggests that the retrograde material has been recently acquired in the gas phase and is still trickling in. Using numerical simulations, we have attempted to model the process by which the counterrotating mass has been accreted by this galaxy. We investigate two possibilities: continuous retrograde infall of gas, and a retrograde merger with a gas-rich dwarf galaxy. Both processes are successful in producing a counterrotating disk of the observed mass and dimensions without heating up the primary significantly. Contrary to our experience with a fiducial cold, thin primary disk, the gas-rich merger works well for the massive, compact primary disk of NGC 4138 even though the mass of the dwarf galaxy is a significant fraction of the mass of the primary disk. Although we have restricted ourselves mainly to coplanar infall and mergers, we report on one inclined infall simulation as well. We also explore the possibility that the H-alpha ring seen in the inner half of the disk is a consequence of counterrotating gas clouds colliding with corotating gas already present in the disk and forming stars in the process.Comment: To appear in ApJ, 21 pages, LaTeX (aaspp4) format, 17 figs (gzipped tar file) also available at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr2/ or at http://www-astronomy.mps.ohio-state.edu/~thakar

    Rotational Widths for Use in the Tully-Fisher Relation. II. The Impact of Surface Brightness

    Full text link
    Using a large sample of spiral galaxies for which 21 cm single-dish and/or long-slit optical spectra are available, we make a detailed comparison between various estimates of rotational widths. Different optical width estimators are considered and their limitations discussed, with emphasis on biases associated with rotation curve properties (shape and extent) and disk central surface brightness. The best match with HI rotational velocities is obtained with Polyex widths, which are measured at the optical radius (encompassing a fixed fraction of the total light of the galaxy) from a model fit to the rotation curve. In contrast with Polyex widths, optical rotational velocities measured at 2.15 disk scale lengths r_d deviate from HI widths by an amount that correlates with the central surface brightness of the disk. This bias occurs because the rotation curves of galaxies are in general still rising at 2.15 r_d, and the fraction of total mass contained within this radius decreases with increasing disk surface brightness. Statistical corrections, parameterized by the radial extent of the observed rotation curve, are provided to reduce Polyex and HI width measurements into a homogeneous system. This yields a single robust estimate of rotational velocity to be used for applications of disk scaling relations.Comment: 13 pages, 8 figures. To appear in the Astronomical Journal (August 2007

    The Compression of Dark Matter Halos by Baryonic Infall

    Full text link
    The initial radial density profiles of dark matter halos are laid down by gravitational collapse in hierarchical structure formation scenarios and are subject to further compression as baryons cool and settle to the halo centers. We here describe an explicit implementation of the algorithm, originally developed by Young, to calculate changes to the density profile as the result of adiabatic infall in a spherical halo model. Halos with random motion are more resistant to compression than are those in which random motions are neglected, which is a key weakness of the simple method widely employed. Young's algorithm results in density profiles in excellent agreement with those from N-body simulations. We show how the algorithm may be applied to determine the original uncompressed halos of real galaxies, a step which must be computed with care in order to enable a confrontation with theoretical predictions from theories such as LCDM.Comment: Revised version for ApJ. 8 pages, 8 figures, latex uses emulateap

    Abundance Profiles and Kinematics of Damped Lyman-alpha Absorbing Galaxies at z < 0.65

    Full text link
    We present a spectroscopic study of six damped Lya absorption (DLA) systems at z<0.65, based on moderate-to-high resolution spectra of the galaxies responsible for the absorbers. Combining known metallicity measurements of the absorbers with known optical properties of the absorbing galaxies, we confirm that the low metal content of the DLA population can arise naturally as a combination of gas cross-section selection and metallicity gradients commonly observed in local disk galaxies. We also study the Tully-Fisher relation of the DLA-selected galaxies and find little detectable evidence for evolution in the disk population between z=0 and z~0.5. Additional results of our analysis are as follows. (1) The DLA galaxies exhibit a range of spectral properties, from post-starburst, to normal disks, and to starburst systems, supporting the idea that DLA galaxies are drawn from the typical field population. (2) Large rotating HI disks of radius 30 h^{-1} kpc and of dynamic mass M_dyn > 10^{11} h^{-1} M_sun appear to be common at intermediate redshifts. (3) Using an ensemble of six galaxy-DLA pairs, we derive an abundance profile that is characterized by a radial gradient of -0.041 +/- 0.012 dex per kiloparsec (or equivalently a scale length of 10.6 h^{-1} kpc) from galactic center to 30 h^{-1} kpc radius. (4) Adopting known N(HI) profiles of nearby galaxies and the best-fit radial gradient, we further derive an N(HI)-weighted mean metallicity _weighted = -0.50 +/- 0.07 for the DLA population over 100 random lines of sight, consistent with _weighted = -0.64 (-0.86, +0.40) observed for z~1 DLA systems from Prochaska et al. Our analysis demonstrates that the low metal content of DLA systems does not rule out the possibility that the DLA population trace the field galaxy population.Comment: 57 pages, 17 figures, to appear in the ApJ 20 February 2005 issue; a pdf version of the paper with full-resolution figures is available at http://falcon.mit.edu/~hchen/public/tmp/dlachem.pd

    Neutral Gas Distribution and Kinematics of the Nearly Face-on Spiral Galaxy NGC 1232

    Get PDF
    We have analyzed high velocity resolution HI synthesis observations of the nearly face-on Sc galaxy NGC 1232. The neutral gas distribution extends well beyond the optical extent of the galaxy. As expected, local peaks in the HI column density are associated with the spiral arms. Further, the HI column density drops precipitously near the center of the galaxy. Closed contours in the velocity field suggest either that the system is warped, or that the rotation curve declines. The velocity dispersion is approximately constant throughout the system, with a median value of 9.9 +/- 1.8 km/s. When corrected for rotational broadening, there is no indication of a radial trend in the neutral gas velocity dispersion in this galaxy.Comment: 14 pages of text, 10 pages of figures. Accepted to the A

    Effects of Dust on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyman-alpha absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky-Way galaxy as a mean and allow a spread in its values to calculate the effects of dust on lensing by low redshift spiral galaxies. Using a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that the magnification bias due to lensing is stronger than dust obscuration for QSO samples with a magnitude limit B<16. The density parameter of neutral hydrogen, Omega_HI, is overestimated in such samples and is underestimated for fainter QSOs.Comment: 18 pages, 4 figures, ApJ, in pres

    Are Dwarf Galaxies Dominated by Dark Matter?

    Full text link
    Mass models for a sample of 18 late-type dwarf and low surface brightness galaxies show that in almost all cases the contribution of the stellar disks to the rotation curves can be scaled to explain most of the observed rotation curves out to two or three disk scale lengths. The concept of a maximum disk, therefore, appears to work as well for these late-type dwarf galaxies as it does for spiral galaxies. Some of the mass-to-light ratios required in our maximum disk fits are high, however, up to about 15 in the R-band, with the highest values occurring in galaxies with the lowest surface brightnesses. Equally well-fitting mass models can be obtained with much lower mass-to-light ratios. Regardless of the actual contribution of the stellar disk, the fact that the maximum disk can explain the inner parts of the observed rotation curves highlights the similarity in shapes of the rotation curve of the stellar disk and the observed rotation curve. This similarity implies that the distribution of the total mass density is closely coupled to that of the luminous mass density in the inner parts of late-type dwarf galaxies.Comment: Accepted for publication in the Astrophysical Journa

    Diffuse HI Disks in Isolated Galaxies

    Full text link
    In order to investigate the contribution of diffuse components to their total HI emission, we have obtained high precision HI line flux densities with the 100m Green Bank Telescope for a sample of 100 isolated spiral and irregular galaxies which we have previously observed with the 43m telescope. A comparison of the observed HI line fluxes obtained with the two different telescopes, characterized by half-power beam widths of 9 arcmin and 21 arcmin respectively, exploits a ``beam matching'' technique to yield a statistical determination of the occurrence of diffuse HI components in their disks. A simple model of the HI distribution within a galaxy well describes ~75 % of the sample and accounts for all of the HI line flux density. The remaining galaxies are approximately evenly divided into two categories: ones which appear to possess a significantly more extensive HI distribution than the model predicts, and ones for which the HI distribution is more centrally concentrated than predicted. Examples of both extremes can be found in the literature but little attention has been paid to the centrally concentrated HI systems. Our sample has demonstrated that galaxies do not commonly possess extended regions of low surface brightness HI gas which is not accounted for by our current understanding of the structure of HI disks. Eight HI-rich companions to the target objects are identified, and a set of extragalactic HI line flux density calibrators is presented.Comment: 26 page

    High-Resolution Measurements of the Dark Matter Halo of NGC 2976: Evidence for a Shallow Density Profile

    Full text link
    We have obtained two-dimensional velocity fields of the dwarf spiral galaxy NGC 2976 in Halpha and CO. The high spatial (~75 pc) and spectral (13 km/s and 2 km/s, respectively) resolution of these observations, along with our multicolor optical and near-infrared imaging, allow us to measure the shape of the density profile of the dark matter halo with good precision. We find that the total (baryonic plus dark matter) mass distribution of NGC 2976 follows a rho_tot ~ r^(-0.27 +/- 0.09) power law out to a radius of 1.8 kpc, assuming that the observed radial motions provide no support. The density profile attributed to the dark halo is even shallower, consistent with a nearly constant density of dark matter over the entire observed region. A maximal disk fit yields an upper limit to the K-band stellar mass-to-light ratio (M*/L_K) of 0.09^{+0.15}_{-0.08} M_sun/L_sun,K (including systematic uncertainties), with the caveat that for M*/L_K > 0.19 M_sun/L_sun,K the dark matter density increases with radius, which is unphysical. Assuming 0.10 M_sun/L_sun,K < M*/L_K < 0.19 M_sun/L_sun,K, the dark matter density profile lies between rho_dm ~ r^-0.17 and rho_dm ~ r^-0.01. Therefore, independent of any assumptions about the stellar disk or the functional form of the density profile, NGC 2976 does not contain a cuspy dark matter halo. We also investigate some of the systematic effects that can hamper rotation curve studies, and show that 1) longslit rotation curves are far more vulnerable to systematic errors than two-dimensional velocity fields, 2) NGC 2976 contains large radial motions at small radii, and 3) the Halpha and CO velocity fields of NGC 2976 agree within their uncertainties. [slightly abridged]Comment: 30 pages, 4 tables, 13 figures (7 in color; Figures 1 and 3 are low-resolution to save space). Accepted for publication in ApJ. Version with full-resolution figures available at http://astro.berkeley.edu/~bolatto/ngc2976rotation.ps (46 MB
    • 

    corecore