5,346 research outputs found
High photovoltages in ferroelectric ceramics
The short-circuit currents and photo-emfs were measured for various ceramics including barium titanate, lead metaniobate, and lead titanate. It is suggested that the emfs and currents arise from the presence of photoconductor-insulator sandwiches in the presence of space-charge-produced internal fields. Results are in agreement with the proposed theory and indicate that the ferroelectric ceramics are not only producers of high-voltage photoelectricity but a photo-battery, the polarity and magnitude of which can be switched by application of an electrical signal
Efficient Simulation of Quantum State Reduction
The energy-based stochastic extension of the Schrodinger equation is a rather
special nonlinear stochastic differential equation on Hilbert space, involving
a single free parameter, that has been shown to be very useful for modelling
the phenomenon of quantum state reduction. Here we construct a general closed
form solution to this equation, for any given initial condition, in terms of a
random variable representing the terminal value of the energy and an
independent Brownian motion. The solution is essentially algebraic in
character, involving no integration, and is thus suitable as a basis for
efficient simulation studies of state reduction in complex systems.Comment: 4 pages, No Figur
Quantum noise and stochastic reduction
In standard nonrelativistic quantum mechanics the expectation of the energy
is a conserved quantity. It is possible to extend the dynamical law associated
with the evolution of a quantum state consistently to include a nonlinear
stochastic component, while respecting the conservation law. According to the
dynamics thus obtained, referred to as the energy-based stochastic Schrodinger
equation, an arbitrary initial state collapses spontaneously to one of the
energy eigenstates, thus describing the phenomenon of quantum state reduction.
In this article, two such models are investigated: one that achieves state
reduction in infinite time, and the other in finite time. The properties of the
associated energy expectation process and the energy variance process are
worked out in detail. By use of a novel application of a nonlinear filtering
method, closed-form solutions--algebraic in character and involving no
integration--are obtained for both these models. In each case, the solution is
expressed in terms of a random variable representing the terminal energy of the
system, and an independent noise process. With these solutions at hand it is
possible to simulate explicitly the dynamics of the quantum states of
complicated physical systems.Comment: 50 page
Dynamical state reduction in an EPR experiment
A model is developed to describe state reduction in an EPR experiment as a
continuous, relativistically-invariant, dynamical process. The system under
consideration consists of two entangled isospin particles each of which undergo
isospin measurements at spacelike separated locations. The equations of motion
take the form of stochastic differential equations. These equations are solved
explicitly in terms of random variables with a priori known probability
distribution in the physical probability measure. In the course of solving
these equations a correspondence is made between the state reduction process
and the problem of classical nonlinear filtering. It is shown that the solution
is covariant, violates Bell inequalities, and does not permit superluminal
signaling. It is demonstrated that the model is not governed by the Free Will
Theorem and it is argued that the claims of Conway and Kochen, that there can
be no relativistic theory providing a mechanism for state reduction, are false.Comment: 19 pages, 3 figure
The EPR experiment in the energy-based stochastic reduction framework
We consider the EPR experiment in the energy-based stochastic reduction
framework. A gedanken set up is constructed to model the interaction of the
particles with the measurement devices. The evolution of particles' density
matrix is analytically derived. We compute the dependence of the
disentanglement rate on the parameters of the model, and study the dependence
of the outcome probabilities on the noise trajectories. Finally, we argue that
these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure
Hidden variable interpretation of spontaneous localization theory
The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a
theory in which wavepacket reduction is treated as a genuine physical process.
Here it is shown that the mathematical formalism of GRW can be given an
interpretation in terms of an evolving distribution of particles on
configuration space similar to Bohmian mechanics (BM). The GRW wavefunction
acts as a pilot wave for the set of particles. In addition, a continuous stream
of noisy information concerning the precise whereabouts of the particles must
be specified. Nonlinear filtering techniques are used to determine the dynamics
of the distribution of particles conditional on this noisy information and
consistency with the GRW wavefunction dynamics is demonstrated. Viewing this
development as a hybrid BM-GRW theory, it is argued that, besides helping to
clarify the relationship between the GRW theory and BM, its merits make it
worth considering in its own right.Comment: 13 page
Martingale Models for Quantum State Reduction
Stochastic models for quantum state reduction give rise to statistical laws
that are in most respects in agreement with those of quantum measurement
theory. Here we examine the correspondence of the two theories in detail,
making a systematic use of the methods of martingale theory. An analysis is
carried out to determine the magnitude of the fluctuations experienced by the
expectation of the observable during the course of the reduction process and an
upper bound is established for the ensemble average of the greatest
fluctuations incurred. We consider the general projection postulate of L\"uders
applicable in the case of a possibly degenerate eigenvalue spectrum, and derive
this result rigorously from the underlying stochastic dynamics for state
reduction in the case of both a pure and a mixed initial state. We also analyse
the associated Lindblad equation for the evolution of the density matrix, and
obtain an exact time-dependent solution for the state reduction that explicitly
exhibits the transition from a general initial density matrix to the L\"uders
density matrix. Finally, we apply Girsanov's theorem to derive a set of simple
formulae for the dynamics of the state in terms of a family of geometric
Brownian motions, thereby constructing an explicit unravelling of the Lindblad
equation.Comment: 30 pages LaTeX. Submitted to Journal of Physics
Fleming's bound for the decay of mixed states
Fleming's inequality is generalized to the decay function of mixed states. We
show that for any symmetric hamiltonian and for any density operator
on a finite dimensional Hilbert space with the orthogonal projection onto
the range of there holds the estimate \Tr(\Pi \rme^{-\rmi ht}\rho
\rme^{\rmi ht}) \geq\cos^{2}((\Delta h)_{\rho}t) for all real with
We show that equality either holds for all
or it does not hold for a single with All the density operators saturating the bound for
all i.e. the mixed intelligent states, are determined.Comment: 12 page
Research on nonlinear optical materials: an assessment. IV. Photorefractive and liquid crystal materials
This panel considered two separate subject areas: photorefractive materials used for nonlinear optics and liquid crystal materials used in light valves. Two related subjects were not considered due to lack of expertise on the panel: photorefractive materials used in light valves and liquid crystal materials used in nonlinear optics. Although the inclusion of a discussion of light valves by a panel on nonlinear optical materials at first seems odd, it is logical because light valves and photorefractive materials perform common functions
On observability of Renyi's entropy
Despite recent claims we argue that Renyi's entropy is an observable
quantity. It is shown that, contrary to popular belief, the reported domain of
instability for Renyi entropies has zero measure (Bhattacharyya measure). In
addition, we show the instabilities can be easily emended by introducing a
coarse graining into an actual measurement. We also clear up doubts regarding
the observability of Renyi's entropy in (multi--)fractal systems and in systems
with absolutely continuous PDF's.Comment: 18 pages, 1 EPS figure, REVTeX, minor changes, accepted to Phys. Rev.
- …