209 research outputs found

    Light-cone quantization of two dimensional field theory in the path integral approach

    Get PDF
    A quantization condition due to the boundary conditions and the compatification of the light cone space-time coordinate x−x^- is identified at the level of the classical equations for the right-handed fermionic field in two dimensions. A detailed analysis of the implications of the implementation of this quantization condition at the quantum level is presented. In the case of the Thirring model one has selection rules on the excitations as a function of the coupling and in the case of the Schwinger model a double integer structure of the vacuum is derived in the light-cone frame. Two different quantized chiral Schwinger models are found, one of them without a ξ\theta-vacuum structure. A generalization of the quantization condition to theories with several fermionic fields and to higher dimensions is presented.Comment: revtex, 14 p

    The g-2 of the Muon in Localized Gravity Models

    Get PDF
    The (g-2) of the muon is well known to be an important model building constraint on theories beyond the Standard Model. In this paper, we examine the contributions to (g−2)ÎŒ(g-2)_\mu arising in the Randall-Sundrum model of localized gravity for the case where the Standard Model gauge fields and fermions are both in the bulk. Using the current experimental world average measurement for (g−2)ÎŒ(g-2)_\mu, we find that strong constraints can be placed on the mass of the lightest gauge Kaluza-Klein excitation for a narrow part of the allowed range of the assumed universal 5-dimensional fermion mass parameter, Îœ\nu. However, employing both perturbativity and fine-tuning constraints we find that we can further restrict the allowed range of the parameter Îœ\nu to only one fourth of its previous size. The scenario with the SM in the RS bulk is thus tightly constrained, being viable for only a small region of the parameter space.Comment: 16 pages, 2 figs, LaTex, Additional discussion adde

    Semileptonic and nonleptonic B decays to three charm quarks: B->J/psi (eta_c) D l nu and J/psi (eta_c) D pi

    Full text link
    We evaluate the form factors describing the semileptonic decays B0ˉ→J/ψ(ηc)D+ℓ−Μˉℓ\bar{B^0}\to J/\psi (\eta_c) D^+ \ell^- \bar \nu_\ell, within the framework of a QCD relativistic potential model. This decay is complementary to B0ˉ→J/ψ(ηc)D+π−\bar{B^0}\to J/\psi (\eta_c) D^+ \pi^- in a phase space region where a pion factors out.We estimate the branching ratio for these semileptonic and nonleptonic channels, finding BR(B0ˉ→J/ψ(ηc)D+ℓΜℓ)≃10−13\mathcal{BR}(\bar{B^0} \to J/\psi (\eta_c) D^+ \ell \nu_\ell) \simeq 10^{-13}, BR(B0ˉ→J/ψD+π−)=3.1×10−8\mathcal{BR}(\bar{B^0} \to J/\psi D^+ \pi^-) = 3.1 \times 10^{-8} and BR(B0ˉ→ηcD+π−)=3.5×10−8\mathcal{BR}(\bar{B^0} \to \eta_c D^+ \pi^-) = 3.5 \times 10^{-8}.Comment: 14 pages, 4 figure

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γ∗γ∗\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal

    Boost operators in Coulomb-gauge QCD: the pion form factor and Fock expansions in phi radiative decays

    Get PDF
    In this article we rederive the Boost operators in Coulomb-Gauge Yang-Mills theory employing the path-integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Moeller operators, weighted by the charge density in the target's rest frame. In addition we remark that the decomposition of the eta' wavefunction in quarkonium, gluonium, ... components attempted by the KLOE collaboration combining data from phi radiative decays, requires corrections due to the velocity of the final state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/psi decays.Comment: 14 pages, 4 figure

    Shockwaves and deep inelastic scattering within the gauge/gravity duality

    Full text link
    Within the gauge/gravity correspondence, we discuss the general formulation of the shockwave metric which is dual to a 'nucleus' described by the strongly-coupled N=4 SYM theory in the limit where the number of colors Nc is arbitrarily large. We emphasize that the 'nucleus' must possess Nc^2 degrees of freedom per unit volume, so like a finite-temperature plasma, in order for a supergravity description to exist. We critically reassess previous proposals for introducing transverse inhomogeneity in the shockwave and formulate a new proposal in that sense, which involves no external source but requires the introduction of an 'infrared' cutoff which mimics confinement. This cutoff however plays no role when the shockwave is probed by a highly virtual projectile, so like in deep inelastic scattering. We consider two such projectiles, the dilaton and the R-current, and compute the respective structure functions including unitarity corrections. We find that there are no leading-twist contributions to the structure functions at high virtuality, meaning that there are no point-like constituents in the strongly coupled 'nucleus'. In the black-disk regime at low virtuality, the structure functions are suggestive of parton saturation with occupation numbers of order one. The saturation momentum Qs grows with the energy like Qs^2 ~ 1/x (with x the Bjorken variable), which is the hallmark of graviton exchanges and is also necessary for the fulfillment of the energy-momentum sum rules.Comment: 43 page

    Universal behavior of baryons and mesons' transverse momentum distributions in the framework of percolation of strings

    Full text link
    In the framework of percolation of strings, we present predictions for the RAAR_{AA} and RCPR_{CP} for mesons and baryons and for pˉ/π0\bar{p}/\pi^{0} ratios at LHC energies.Comment: Presented at "Heavy Ion Collisions at the LHC: last call for predictions", Geneva Switzerland, May 14th-June 8t

    Photon and Z induced heavy charged lepton pair production at a hadron supercollider

    Get PDF
    We investigate the pair production of charged heavy leptons via photon-induced processes at the proposed CERN Large Hadron Collider (LHC). Using effective photon and Z approximations, rates are given for L+L−L^+L^- production due to γγ\gamma \gamma fusion and ZγZ \gamma fusion for the cases of inelastic, elastic and semi-elastic pppp collisions. These are compared with the corresponding rates for production via the gluon fusion and Drell-Yan mechanisms. Various γγ\gamma \gamma and ZγZ \gamma differential luminosities for pppp collisions are also presented.Comment: 22 pages, RevTex 3.0, 6 uuencoded and compressed postscript figures included. Reference to one paper changed from the original preprint number to the published version. Everything else unchange

    Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations

    Full text link
    Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System

    Quark initiated coherent diffractive production of muon pair and W boson at hadron colliders

    Get PDF
    The large transverse momentum muon pair and W boson productions in the quark initiated coherent diffractive processes at hadron colliders are discussed under the framework of the two-gluon exchange parametrization of the Pomeron model. In this approach, the production cross sections are related to the small-x off-diagonal gluon distribution and the large-x quark distribution in the proton (antiproton). By approximating the off-diagonal gluon distribution by the usual gluon distribution function, we estimate the production rates of these processes at the Fermilab Tevatron.Comment: 11pages, 6 PS figures, to appear in PR
    • 

    corecore