935 research outputs found

    Spin contribution to the ponderomotive force in a plasma

    Full text link
    The concept of a ponderomotive force due to the intrinsic spin of electrons is developed. An expression containing both the classical as well as the spin-induced ponderomotive force is derived. The results are used to demonstrate that an electromagnetic pulse can induce a spin-polarized plasma. Furthermore, it is shown that for certain parameters, the nonlinear back-reaction on the electromagnetic pulse from the spin magnetization current can be larger than that from the classical free current. Suitable parameter values for a direct test of this effect are presented.Comment: 4 pages, 2 figures, version accepted for publication in Physical Review Letter

    Nonlinear Interactions Between Gravitational Radiation and Modified Alfven Modes in Astrophysical Dusty Plasmas

    Get PDF
    We present an investigation of nonlinear interactions between Gravitational Radiation and modified Alfv\'{e}n modes in astrophysical dusty plasmas. Assuming that stationary charged dust grains form neutralizing background in an electron-ion-dust plasma, we obtain the three wave coupling coefficients, and calculate the growth rates for parametrically coupled gravitational radiation and modified Alfv\'{e}n-Rao modes. The threshold value of the gravitational wave amplitude associated with convective stabilization is particularly small if the gravitational frequency is close to twice the modified Alfv\'en wave-frequency. The implication of our results to astrophysical dusty plasmas is discussed.Comment: A few typos corrected. Published in Phys. Rev.

    New Quantum Limits in Plasmonic Devices

    Full text link
    Surface plasmon polaritons (SPPs) have recently been recognized as an important future technique for microelectronics. Such SPPs have been studied using classical theory. However, current state-of-the-art experiments are rapidly approaching nanoscales, and quantum effects can then become important. Here we study the properties of quantum SPPs at the interface between an electron quantum plasma and a dielectric material. It is shown that the effect of quantum broadening of the transition layer is most important. In particular, the damping of SPPs does not vanish even in the absence of collisional dissipation, thus posing a fundamental size limit for plasmonic devices. Consequences and applications of our results are pointed out.Comment: 5 pages, 2 figures, to appear in Europhysics Letter

    Resonant interaction between gravitational waves, electromagnetic waves and plasma flows

    Full text link
    In magnetized plasmas gravitational and electromagnetic waves may interact coherently and exchange energy between themselves and with plasma flows. We derive the wave interaction equations for these processes in the case of waves propagating perpendicular or parallel to the plasma background magnetic field. In the latter case, the electromagnetic waves are taken to be circularly polarized waves of arbitrary amplitude. We allow for a background drift flow of the plasma components which increases the number of possible evolution scenarios. The interaction equations are solved analytically and the characteristic time scales for conversion between gravitational and electromagnetic waves are found. In particular, it is shown that in the presence of a drift flow there are explosive instabilities resulting in the generation of gravitational and electromagnetic waves. Conversely, we show that energetic waves can interact to accelerate particles and thereby \emph{produce} a drift flow. The relevance of these results for astrophysical and cosmological plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde

    Parametric excitation of plasma waves by gravitational radiation

    Get PDF
    We consider the parametric excitation of a Langmuir wave and an electromagnetic wave by gravitational radiation, in a thin plasma on a Minkowski background. We calculate the coupling coefficients starting from a kinetic description, and the growth rate of the instability is found. The Manley-Rowe relations are fulfilled only in the limit of a cold plasma. As a consequence, it is generally difficult to view the process quantum mechanically, i.e. as the decay of a graviton into a photon and a plasmon. Finally we discuss the relevance of our investigation to realistic physical situations.Comment: 5 pages, REVTe

    Effects of the gg-factor in semi-classical kinetic plasma theory

    Full text link
    A kinetic theory for spin plasmas is put forward, generalizing those of previous authors. In the model, the ordinary phase space is extended to include the spin degrees of freedom. Together with Maxwell's equations, the system is shown to be energy conserving. Analysing the linear properties, it is found that new types of wave-particle resonances are possible, that depend directly on the anomalous magnetic moment of the electron. As a result new wave modes, not present in the absence of spin, appear. The implications of our results are discussed.Comment: 4 pages, two figures, version to appear in Physical Review Letter

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    Ferroplasmas: Magnetic Dust Dynamics in a Conducting Fluid

    Full text link
    We consider a dusty plasma, in which the dust particles have a magnetic dipole moment. A Hall-MHD type of model, generalized to account for the intrinsic magnetization, is derived. The model is shown to be energy conserving, and the energy density and flux is derived. The general dispersion relation is then derived, and we show that kinetic Alfv\'en waves exhibit an instability for a low temperature and high density plasma. We discuss the implication of our results.Comment: 6 pages, 1 figur

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Parametric phenomena of the particle dynamics in a periodic gravitational wave field

    Get PDF
    We establish exactly solvable models for the motion of neutral particles, electrically charged point and spin particles (U(1) symmetry), isospin particles (SU(2) symmetry), and particles with color charges (SU(3) symmetry) in a gravitational wave background. Special attention is devoted to parametric effects induced by the gravitational field. In particular, we discuss parametric instabilities of the particle motion and parametric oscillations of the vectors of spin, isospin, and color charge.Comment: 26 pages, to be published in J. Math. Phy
    • …
    corecore