3,596 research outputs found
On ‘Organized Crime’ in the illicit antiquities trade: moving beyond the definitional debate
The extent to which ‘organized crime’ is involved in illicit antiquities trafficking is unknown and frequently debated. This paper explores the significance and scale of the illicit antiquities trade as a unique transnational criminal phenomenon that is often said to be perpetrated by and exhibit traits of so-called ‘organized crime.’ The definitional debate behind the term ‘organized crime’ is considered as a potential problem impeding our understanding of its existence or extent in illicit antiquities trafficking, and a basic progression-based model is then suggested as a new tool to move beyond the definitional debate for future research that may help to elucidate the actors, processes and criminal dynamics taking place within the illicit antiquities trade from source to market. The paper concludes that researchers should focus not on the question of whether organized criminals- particularly in a traditionally conceived, mafia-type stereotypical sense- are involved in the illicit antiquities trade, but instead on the structure and progression of antiquities trafficking itself that embody both organized and criminal dynamics
Globular Clusters in the dE,N galaxy NGC 3115 DW1: New Insights from Spectroscopy and HST Photometry
The properties of globular clusters in dwarf galaxies are key to
understanding the formation of globular cluster systems, and in particular in
verifying scenarios in which globular cluster systems of larger galaxies formed
(at least partly) from the accretion of dwarf galaxies. Here, we revisit the
globular cluster system of the dE,N galaxy NGC 3115 DW1 - a companion of the
nearby S0 galaxy NGC 3115 - adding Keck/LRIS spectroscopy and HST/WFPC2 imaging
to previous ground-based photometry. Spectra for seven globular clusters reveal
normal abundance ratios with respect to the Milky Way and M31 clusters, as well
as a relatively high mean metallicity ([Fe/H] = -1.0+/-0.1 dex). Crude
kinematics indicate a high velocity dispersion within 10 kpc which could either
be caused by dark matter dominated outer regions, or by the stripping of outer
globular clusters by the nearby giant galaxy NGC 3115. The total galaxy mass
out to 3 and 10 kpc lies between 10^10 and 10^11 solar masses and 2*10^10 and
4*10^11 solar masses, respectively, depending on the mass estimator used and
the assumptions on cluster orbits and systemic velocity. The HST imaging allows
measurement of sizes for two clusters, returning core radii around 2.0 pc,
similar to the sizes observed in other galaxies. Spectroscopy allows an
estimate of the degree of contamination by foreground stars or background
galaxies for the previous ground-based photometry, but does not require a
revision of previous results: NGC 3115 DW1 hosts around 60+/-20 clusters which
corresponds to a specific frequency of 4.9+/-1.9, on the high end for massive
dEs. Given its absolute magnitude (M_V=-17.7 mag) and the properties of its
cluster system, NGC 3115 DW1 appears to be a transition between a luminous dE
and low-luminosity E galaxy.Comment: 25 pages, 8 figures, accepted for publication in The Astronomical
Journal, August 2000 issu
An Investigation into Tetrodotoxin (TTX) Levels Associated with the Red Dorsal Spots in Eastern Newt (Notophthalmus viridescens) Efts and Adults
We investigated the concentration of tetrodotoxin (TTX) in sections of skin containing and lacking red dorsal spots in both Eastern newt (Notophthalmus viridescens) efts and adults. Several other species, such as Pleurodeles waltl and Echinotriton andersoni, have granular glands concentrated in brightly pigmented regions on the dorsum, and thus we hypothesized that the red dorsal spots of Eastern newts may also possess higher levels of TTX than the surrounding skin. We found no difference between the concentrations of TTX in the red spots as compared to neighboring skin lacking these spots in either efts or adults. However, efts with more red dorsal spots had elevated TTX levels relative to efts with fewer spots
The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta)
Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures) and ocean acidification (decreasing ocean pH and carbonate saturation). It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta). Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP), respiration (R) and net calcification (NG) was performed in a south-western UK field site, at multiple temporal scales (seasonal, diurnal and tidal). Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 µmol DIC (g DW)−1 h−1, Ek of 300 µmol photons m−2 s−1 and R of 3.29 µmol DIC (g DW)−1 h−1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67), although was temperature dependent given ambient irradiance > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80) by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94 µmol CaCO3 (g DW)−1 h−1 and Ek of 113 µmol photons m−2 s−1. Light NG showed strong seasonality and significant coupling to NP (R2 = 0.65) as opposed to rock pool water carbonate saturation. In contrast, the direction of dark NG (dissolution vs. precipitation) was strongly related to carbonate saturation, mimicking abiotic precipitation dynamics. Data demonstrated that C. officinalis is adapted to both long-term (seasonal) and short-term (tidal) variability in environmental stressors, although the balance between metabolic processes and the external environment may be significantly impacted by future climate change
Dynamical Mass Estimates for Five Young Massive Stellar Clusters
We have obtained high-dispersion spectra for four massive star clusters in
the dwarf irregular galaxies NGC 4214 and NGC 4449, using the HIRES
spectrograph on the Keck I telescope. Combining the velocity dispersions of the
clusters with structural parameters and photometry from images taken with HST,
we estimate mass-to-light ratios and compare these with simple stellar
population (SSP) models in order to constrain the stellar mass functions (MFs).
For all clusters we find mass-to-light ratios which are similar to or slightly
higher than for a Kroupa MF, and thereby rule out any MF which is deficient in
low-mass stars compared to a Kroupa-type MF. The four clusters have virial
masses ranging between 2.1E5 Msun and 1.5E6 Msun, half-light radii between 3.0
and 5.2 pc, estimated core densities in the range 2E3 Msun pc^-3 to 2E5 Msun
pc^-3 and ages between 200 Myr and 800 Myr. We also present new high-dispersion
near-infrared spectroscopy for a luminous young (about 15 Myr) cluster in the
nearby spiral galaxy NGC 6946, which we have previously observed with HIRES.
The new measurements in the infrared agree well with previous estimates of the
velocity dispersion, yielding a mass of about 1.7E6 Msun. The properties of the
clusters studied here are all consistent with the clusters being young versions
of the old globular clusters found around all major galaxies.Comment: 30 pages, including 7 figures and 9 tables. Corrected an error in
Table 2: The colors listed for N6946-1447 were not reddening corrected. This
also affected Table 9 and Fig 2, 6 and
The M31 Globular Cluster Luminosity Function
We combine our compilation of photometry of M31 globular cluster and probable
cluster candidates with new near-infrared photometry for 30 objects. Using
these data we determine the globular cluster luminosity function (GCLF) in
multiple filters for the M31 halo clusters. We find a GCLF peak and dispersion
of V_0^0=16.84 +/-0.11, sigma_t=0.93 +/- 0.13 (Gaussian sigma = 1.20 +/- 0.14),
consistent with previous results. The halo GCLF peak colors (e.g., B^0_0 -
V^0_0) are consistent with the average cluster colors. We also measure V-band
GCLF parameters for several other subsamples of the M31 globular cluster
population. The inner third of the clusters have a GCLF peak significantly
brigher than that of the outer clusters (delta V =~ 0.5mag). Dividing the
sample by both galacticentric distance and metallicity, we find that the GCLF
also varies with metallicity, as the metal-poor clusters are on average 0.36
mag fainter than the metal-rich clusters. Our modeling of the catalog selection
effects suggests that they are not the cause of the measured differences, but a
more complete, less-contaminated M31 cluster catalog is required for
confirmation. Our results imply that dynamical destruction is not the only
factor causing variation in the M31 GCLF: metallicity, age, and cluster initial
mass function may also be important.Comment: AJ, in press. 36 pages, including 7 figure
A Phase 2 Randomized Controlled Trial of the Efficacy and Safety of Cannabidivarin as Add-on Therapy in Participants with Inadequately Controlled Focal Seizures
OBJECTIVE: We assessed the efficacy, safety, and tolerability of cannabidivarin (CBDV) as add-on therapy in adults with inadequately controlled focal seizures. MATERIALS AND METHODS: One hundred and sixty-two participants (CBDV n=81; placebo n=81) were enrolled. After a 4-week baseline, participants titrated from 400 to 800 mg CBDV twice daily (b.i.d.) (or placebo) over 2 weeks, followed by 6 weeks stable dosing (at 800 mg b.i.d.) and a 12-day taper period. The primary endpoint was the change from baseline in focal seizure frequency during the 8-week treatment period. Secondary endpoints included additional efficacy measures relating to seizures, physician- and participant-reported outcomes, change in the use of rescue medication, cognitive assessments, and safety. RESULTS: Median baseline focal seizure frequencies were 17–18 per 28 days in both groups, and similar reductions in frequency were observed in the CBDV (40.5%) and placebo (37.7%) groups during the treatment period (treatment ratio [% reduction] CBDV/placebo: 0.95 [4.6]; confidence interval: 0.78–1.17 [−16.7 to 21.9]; p=0.648). There were no differences between the CBDV and placebo groups for any seizure subtype. There were no significant treatment differences between CBDV and placebo groups for any of the secondary efficacy outcome measures. Overall, 59 (72.8%) of participants in the CBDV group and 39 (48.1%) in the placebo group had ≥1 treatment-emergent adverse event (AE); the 3 most common were diarrhea, nausea, and somnolence. The incidence of serious AEs was low (3.7% in the CBDV group vs. 1.2% in the placebo group). There was little or no effect of CBDV on vital signs, physical examination, or electrocardiogram findings. Elevations in serum transaminases (alanine aminotransferase or aspartate aminotransferase) to levels >3×upper limit of normal occurred in three participants taking CBDV (two discontinued as a result) and one taking placebo; however, none met the criteria for potential Hy's Law cases. CONCLUSION: It is likely the 40.5% seizure reduction with CBDV represents an appropriate pharmacological response in this population with focal seizures. The placebo response was, however, high, which may reflect the participants' expectations of CBDV, and a treatment difference from placebo was not observed. CBDV was generally well tolerated
Spectroscopy of Globular Clusters in M81
We present moderate-resolution spectroscopy of globular clusters (GCs) around
the Sa/Sb spiral galaxy M81 (NGC 3031). Sixteen candidate clusters were
observed with the Low Resolution Imaging Spectrograph on the Keck I telescope.
All are confirmed as bona fide GCs, although one of the clusters appears to
have been undergoing a transient event during our observations. In general, the
M81 globular cluster system (GCS) is found to be very similar to the Milky Way
(MW) and M31 systems, both chemically and kinematically. A kinematic analysis
of the velocities of 44 M81 GCS, (the 16 presented here and 28 from previous
work) strongly suggests that the red, metal-rich clusters are rotating in the
same sense as the gas in the disk of M81. The blue, metal-poor clusters have
halo-like kinematics, showing no evidence for rotation. The kinematics of
clusters whose projected galactocentric radii lie between 4 and 8 kpc suggest
that they are rotating much more than those which lie outside these bounds. We
suggest that these rotating, intermediate-distance clusters are analogous to
the kinematic sub-population in the metal-rich, disk GCs observed in the MW and
we present evidence for the existence of a similar sub-population in the
metal-rich clusters of M31. With one exception, all of the M81 clusters in our
sample have ages that are consistent with MW and M31 GCs. One cluster may be as
young as a few Gyrs. The correlations between absorption-line indices
established for MW and M31 GCs also hold in the M81 cluster system, at least at
the upper end of the metallicity distribution (which our sample probes). On the
whole, the mean metallicity of the M81 GCS is similar to the metallicity of the
MW and M31 GCSs. The projected mass of M81 is similar to the masses of the MW
and M31. Its mass profile indicates the presence of a dark matter halo.Comment: 35 pages, including 11 figures and 9 tables. Accepted for publication
in the Astronomical Journa
- …