991 research outputs found

    Spatially Confined Redox Chemistry in Periodic Mesoporous Hydridosilica-Nanosilver Grown in Reducing Nanopores

    Get PDF
    Cataloged from PDF version of article.Periodic mesoporous hydridosilica, PMHS, is shown for the first time to function as both a host and a mild reducing agent toward noble metal ions. In this archetypical study, PMHS microspheres react with aqueous Ag(I) solutions to form Ag(0) nanopartides housed in different pore locations of the mesostructure. The dominant reductive nucleation and growth process involves groups located within the pore walls and yields molecular scale Ag(0) nanoclusters trapped and stabilized in the pore walls of the PMHS microspheres that emit orange-red photoluminescence. Lesser processes initiated with pore surface SiH groups produce some larger spherical and worm-shaped Ag(0) nanoparticles within the pore voids and on the outer surfaces of the PMHS microspheres. The intrinsic reducing power demonstrated in this work for the pore walls of PMHS speaks well for a new genre of chemistry that benefits from the mesoscopic confinement of Si-H groups

    Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics

    Get PDF
    The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process

    Resolving \u3ci\u3eBovine viral diarrhea virus\u3c/i\u3e subtypes from persistently infected U.S. beef calves with complete genome sequence

    Get PDF
    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5′-UTR (5′ untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought

    Resolving \u3ci\u3eBovine viral diarrhea virus\u3c/i\u3e subtypes from persistently infected U.S. beef calves with complete genome sequence

    Get PDF
    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5′-UTR (5′ untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought

    Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics

    Get PDF
    The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit

    Periodic Mesoporous Hydridosilica-Synthesis of an "Impossible" Material and its Thermal Transformation into Brightly Photoluminescent Periodic Mesoporous Nanocrystal Silicon-Silica Composite

    Get PDF
    Cataloged from PDF version of article.There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO1.5). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO1.5 can be synthesized by template-directed self-assembly of HSi(OEt)3 under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO2, a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies. © 2011 American Chemical Society

    Phasing the 30S ribosomal subunit structure

    Get PDF
    The methods involved in determining the 850 kDa structure of the 30S ribosomal subunit from Thermus thermophilus were in many ways identical to those that are generally used in standard protein crystallography. This paper reviews and analyses the methods that can be used in phasing such large structures and shows that the anomalous signal collected from heavy-atom compounds bound to the RNA is both necessary and sufficient for ab initio structure determination at high resolution. In addition, measures to counter problems with non-isomorphism and radiation decay are described

    Phasing the 30S ribosomal subunit structure

    Get PDF
    The methods involved in determining the 850 kDa structure of the 30S ribosomal subunit from Thermus thermophilus were in many ways identical to those that are generally used in standard protein crystallography. This paper reviews and analyses the methods that can be used in phasing such large structures and shows that the anomalous signal collected from heavy-atom compounds bound to the RNA is both necessary and sufficient for ab initio structure determination at high resolution. In addition, measures to counter problems with non-isomorphism and radiation decay are described

    Employing machine learning for reliable miRNA target identification in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions.</p> <p>Result</p> <p>In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like <it>Arabidopsis</it>, <it>Medicago</it>, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version.</p> <p>Conclusion</p> <p>A machine learning multivariate feature tool has been implemented in parallel and locally installable form, for plant miRNA target identification. The performance was assessed and compared through comprehensive testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant miRNA target identification.</p

    Potential Role of miRNAs in Developmental Haemostasis

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that are negative regulators in a crescent number of physiological and pathological processes. However, their role in haemostasis, a complex physiological process involving multitude of effectors, is just beginning to be characterized. We evaluated the changes of expression of miRNAs in livers of neonates (day one after birth) and adult mice by microarray and qRT-PCR trying to identify miRNAs that potentially may also be involved in the control of the dramatic change of hepatic haemostatic protein levels associated with this transition. Twenty one out of 41 miRNAs overexpressed in neonate mice have hepatic haemostatic mRNA as potential targets. Six of them identified by two in silico algorithms potentially bind the 3′UTR regions of F7, F9, F12, FXIIIB, PLG and SERPINC1 mRNA. Interestingly, miR-18a and miR-19b, overexpressed 5.4 and 8.2-fold respectively in neonates, have antithrombin, a key anti-coagulant with strong anti-angiogenic and anti-inflammatory roles, as a potential target. The levels of these two miRNAs inversely correlated with antithrombin mRNA levels during development (miR-19b: R = 0.81; p = 0.03; miR-18a: R = 0.91; p<0.001). These data suggest that miRNAs could be potential modulators of the haemostatic system involved in developmental haemostasis
    corecore