5,001 research outputs found
Ni-cd Battery Life Expectancy in Geosynchronous Orbit
The feasibility of using nickel cadmium batteries as an alternate if flight qualified NiH2 batteries are not available is explored. Battery life expectancy data being a key element of power system design, an attempt is made to review the literature, life test data and in orbit performance data to develop an up to date estimate of life expectancy for NiCd batteries in a geosynchronous orbit
A system for early warning of bearing failure
System for detecting incipient failure in ball bearings is described. Ultrasonic equipment detects bearing system resonance and provides warning signal through electronic circuitry. Detector can be used to evaluate performance of newly installed bearings. Schematic diagram is provided to show components
Considerations of high altitude emissions
The status of the Federal Aviation Administration's High Altitude Pollution Program is described which was instituted to develop the detailed quantitative information needed to judge whether or not regulatory action to limit such exhaust emissions would be necessary. The complexities of this question and the nature and magnitude of uncertainties still present in our scientific understanding of the potential interactions between aircraft exhaust emissions and stratospheric ozone and climate are reviewed. The direction and scope of future Federal and international activities are described
Modeling field evaporation degradation of metallic surfaces by first principles calculations: A case study for Al, Au, Ag, and Pd
Indexación: Scopus.Under the effects of an extreme electric field, the atoms on a metallic surface evaporate by breaking their bonds with the surface. In this work, we present the effects of a high electric field, by the use of computational simulations, for different metallic surface chemistries: Al, Au, Ag, and Pd. To model this bond breaking procedrure (i.e. field evaporation), we use density functional theory through the Quantum-Espresso (QE) simulation package, which incorporates the electric fields by adding a saw-like funcion into the Hamiltonian. This approach, known as dipole correction, was applied to all simulations as is implemented in the QE package. In this work, we calculate the evaporation field (Fe ) for all metallic species, which corresponds to the mean field at which atoms can break their bonds from the surface and evaporate. This result is compared with experimantal data from Atom Probe Tomography (APT) and computational data from prior simulations. © Published under licence by IOP Publishing Ltd.This work was supported by the Proyecto FONDECYT Iniciación 11130501. JP Also acknowledges partial support from Proyecto FONDECYT Regular 1140514 and Proyecto UAB-775. CL acknowledges support from Proyecto FONDECYT Iniciación 11150279, Proyecto PAI-79140025, and Proyecto DI-1350-16/R.https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/01203
Design and fabrication of prototype system for early warning of impending bearing failure
Ball bearing performance tests run on several identical ball bearings under a variety of load, speed, temperature, and lubrication conditions are reported. Bearing temperature, torque, vibration, noise, strain, cage speed, etc., were monitored to establish those measurements most suitable as indicators of ball bearing health. Tape records were made under steady-state conditions of a variety of speeds and loads. Sample sections were selected for narrowband spectral analysis with a real time analyzer. An artificial flow was created across the inner race surface of one bearing using an acid etch technique to produce the scratch. Tape records obtained before and after established a characteristic frequency response that identifies the presence of the flow. The signals found most useful as indicators of performance degradation were ultrasonic outputs
Impact of extreme electrical fields on charge density distributions in Al3Sc alloy
Indexación: Web of Science.In this study, the authors investigated how extreme electrical fields affect charge distribution of metallic surfaces and bond character at the moment of evaporation. The surface structure and neighborhood chemistry were also studied as a function of various field evaporation pathways. Density functional theory (DFT) was used to model the surface bonding and charge distribution and then correlate the DFT results with experimental results by comparing the calculated evaporation fields with atom probe tomography measurements. The evaporation fields of different surface neighborhood chemistries in L1(2)-Al3Sc were calculated, with the Sc atoms occupying the corners of a cubic unit cell and the Al atoms occupying the face centers. Al-Al surface atoms are found via DFT to be more likely to evaporate as dimers because of the Al-Al shared charge density. In contrast, Al-Sc evaporates as single ions due to the increased density localized around the Sc atom. This difference in evaporation behavior correlates with the resistance to degradation under extreme fields. This work allows better interpretation of the atom probe data by clarifying the relationship between different evaporation events and the role of surface and subsurface chemistry. (C) 2016 Author(s).http://avs.scitation.org/doi/10.1116/1.496483
Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment
Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration).
Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of
many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region
Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment
Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration).
Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of
many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region
- …