2,017 research outputs found

    Inside the Bondi radius of M87

    Get PDF
    Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve the hot gas structure across the Bondi accretion radius of the central supermassive black hole, a measurement possible in only a handful of systems but complicated by the bright nucleus and jet emission. By stacking only short frame-time observations to limit pileup, and after subtracting the nuclear PSF, we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc (1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we detect two significant temperature components, which are consistent with constant values of 2 keV and 0.9 keV down to 0.15 kpc radius. No evidence was found for the expected temperature increase within ~0.25 kpc due to the influence of the SMBH. Within the Bondi radius, the density profile is consistent with ρr1\rho\propto r^{-1}. The lack of a temperature increase inside the Bondi radius suggests that the hot gas structure is not dictated by the SMBH's potential and, together with the shallow density profile, shows that the classical Bondi rate may not reflect the accretion rate onto the SMBH. If this density profile extends in towards the SMBH, the mass accretion rate onto the SMBH could be at least two orders of magnitude less than the Bondi rate, which agrees with Faraday rotation measurements for M87. We discuss the evidence for outflow from the hot gas and the cold gas disk and for cold feedback, where gas cooling rapidly from the hot atmosphere could feed the cirumnuclear disk and fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component represents ~20% of the total X-ray gas mass and, by losing angular momentum to the hot gas component, could provide a fuel source of cold clouds within the Bondi radius.Comment: 14 pages, 8 figures, accepted by MNRA

    The Equation of State of Neutron-Star Matter in Strong Magnetic Fields

    Get PDF
    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach which permits the study of several models which differ in their behavior at high density. Effects of Landau quantization in ultra-strong magnetic fields (B>1014B>10^{14} Gauss) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>1018B>10^{18} Gauss that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultra-strong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of H/B|H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields.Comment: 40 pages, 7 figures, accepted for publication in Ap

    Cuspons, peakons and regular gap solitons between three dispersion curves

    Full text link
    A general wave model with the cubic nonlinearity is introduced to describe a situation when the linear dispersion relation has three branches, which would intersect in the absence of linear couplings between the three waves. Actually, the system contains two waves with a strong linear coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum. Realizations of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, a planar waveguide or a bulk-layered medium resembling a photonic-crystal fiber. Another physical system described by the same model is a set of three internal wave modes in a density-stratified fluid. A nonlinear analysis is performed for solitons which have zero velocity in the reference frame in which the group velocity of the third wave vanishes. Disregarding the self-phase modulation (SPM) term in the equation for the third wave, we find two coexisting families of solitons: regular ones, which may be regarded as a smooth deformation of the usual gap solitons in a two-wave system, and cuspons with a singularity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the first two vanishes, the soliton family remains drastically different from that in the linearly uncoupled system; in this limit, regular solitons whose amplitude exceeds a certain critical value are replaced by peakons. While the regular solitons, cuspons, and peakons are found in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the SPM terms are retained, we find that there again coexist two different families of generic stable soliton solutions, namely, regular ones and peakons.Comment: a latex file with the text and 10 pdf files with figures. Physical Review E, in pres

    Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    Full text link
    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The Central Kiloparse

    Quark-hadron phase transition in a neutron star under strong magnetic fields

    Full text link
    We study the effect of a strong magnetic field on the properties of neutron stars with a quark-hadron phase transition. It is shown that the magnetic field prevents the appearance of a quark phase, enhances the leptonic fraction, decreases the baryonic density extension of the mixed phase and stiffens the total equation of state, including both the stellar matter and the magnetic field contributions. Two parametrisations of a density dependent static magnetic field, increasing, respectively, fast and slowly with the density and reaching 24×10182-4\times 10^{18}G in the center of the star, are considered. The compact stars with strong magnetic fields have maximum mass configurations with larger masses and radius and smaller quark fractions. The parametrisation of the magnetic field with density has a strong influence on the star properties.Comment: 15 pages, 6 figures, 8 tables, accepted for publication in J. Phys.

    VLBI observations of the Crab nebula pulsar

    Get PDF
    Observations were made at meter wave-lengths using very long base-line interferometry techniques. At 196.5 MHz no resolution of the pulsar are observed; all the pulse shapes observed with the interferometers are similar to single dish profiles, and all the power pulsates. At 111.5 MHz besides the pulsing power there is always a steady component, presumably due to interstellar scattering. The pulsar is slightly resolved at 111.5 MHz with an apparent angular diameter of 0.07 sec ? 0.01 sec. A 50 percent linear polarization of the time-averaged power is noted at 196.5 MHz; at 111.5 MHz, 20 percent of the total time-averaged power is polarized, 35 percent of the pulsing power is polarized, and the steady component is unpolarized

    Effect of a Fundamental Motor Skills Intervention on Fundamental Motor Skill and Physical Activity in a Preschool Setting: A Cluster Randomized Controlled Trial

    Full text link
    Purpose: To determine the effect of a 12-week fundamental motor skill (FMS) program on FMS and physical activity (PA) on preschool-aged children. Method: A cluster randomized controlled trial. The intervention (PhysicaL ActivitY and Fundamental Motor Skills in Pre-schoolers [PLAYFun] Program) was a 12-week games-based program, delivered directly to the children in childcare centers by exercise physiologists. Children in the control arm received the usual preschool curriculum. Outcomes included FMS competence (Test of Gross Motor Development-2) and PA (accelerometer) assessed at baseline, 12 weeks, and 24 weeks (12-wk postintervention). Results: Fifty children (mean age = 4.0 [0.6] y; 54% male) were recruited from 4 childcare centers. Two centers were randomized to PLAYFun and 2 centers were randomized to the waitlist control group. Children attended on average 2.0 (1.0) 40-minute sessions per week. The PLAYFun participants demonstrated significant increases in object control (P < .001) and total FMS (P = .010) competence at week 12, compared with controls in a group × time interaction. Girls, but not boys, in PLAYFun significantly increased moderate to vigorous PA after the intervention (P = .004). These increases were not maintained 12-week postcompletion of PLAYFun. Conclusions: The PLAYFun Program is effective at improving FMS competence in boys and girls and increasing PA in girls. However, improvements are not maintained when opportunities to practice are not sustained

    An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors.

    Get PDF
    To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers

    HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis

    Get PDF
    AbstractIn an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized
    corecore