35 research outputs found

    Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment

    Get PDF
    Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration). Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region

    Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment

    Get PDF
    Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration). Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region

    Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods

    Get PDF
    Understanding hydrological model predictive capabilities under contrasting climate conditions enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used for model training. Additionally, we consider four ensemble averaging techniques when examining interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal precipitation regime. Model transferability between contrasting regimes was found to vary depending on the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average outperformed most individual ensemble members. However, averaging techniques differed considerably in the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best individual model in 51%–86% of cases (according to the Nash-Sutcliffe criterion). When assessing model predictive skill under climate change conditions we recommend (i) setting up DSST to select the best available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble averaging technique for climate assessment

    Using a scenario-neutral framework to avoid potential maladaptation to future flood risk

    Get PDF
    This study develops a coherent framework to detect those catchment types associated with ahigh risk of maladaptation to futureflood risk. Using the“scenario‐neutral”approach to impactassessment the sensitivity of Irish catchments tofluvialflooding is examined in the context of nationalclimate change allowances. A predefined sensitivity domain is used to quantifyflood responses to +2 °Cmean annual temperature with incremental changes in the seasonality and mean of the annual precipitationcycle. The magnitude of the 20‐yearflood is simulated at each increment using two rainfall‐runoff models(GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchmentsensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributesare used to classify 215 ungauged/data‐sparse catchments. To address possible redundancies, the exposure ofdifferent catchment types to projected climate is established using an objectively selected subset of theCoupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown tosignificantly influence sensitivity and have a greater effect than ensemble bias. A nationalflood riskallowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of theuncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative ConcentrationPathway 8.5; 2070–2099), irrespective of hydrological model and catchment type. However, results indicatethat assuming a standard national or regional allowance could lead to local over/under adaptation. Herein,catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle ofprecipitation and warrant special attention

    Irish droughts in newspaper archives: rediscovering forgotten hazards?

    Get PDF
    Irish newspaper collections are a rich source of information on historical droughts. Following a search of 250 years of such archives, this paper brings to light four newspaper articles describing three drought events that convey the cultural impacts and unusual societal responses to nineteenth century drought in Ireland. Amongst the archives we find two poems from 1806 and 1893, a call to pray for rain in 1887, and a suggestion for weather modification in 1893. These records demonstrate that, contrary to recent experience, Ireland is surprisingly prone to drought

    An evaluation of persistent meteorological drought using a homogeneous Island of Ireland precipitation network

    Get PDF
    This paper investigates the spatial and temporal properties of persistent meteorological droughts using the homogeneous Island of Ireland Precipitation (IIP) network. Relative to a 1961–1990 baseline period it is shown that the longest observed run of below average precipitation since the 1850s lasted up to 5 years (10 half-year seasons) at sites in southeast and east Ireland, or 3 years across the network as a whole. Dry spell and wet spell length distributions were represented by a first-order Markov model which yields realistic runs of below average rainfall for individual sites and IIP series. This model shows that there is relatively high likelihood (p = 0.125) of a 5-year dry spell at Dublin, and that near unbroken dry runs of 10 years or more are conceivable. We suggest that the IIP network and attendant rainfall deficit modelling provide credible data for stress testing water supply and drought plans under extreme conditions

    Multi-century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records

    Get PDF
    Globally, few precipitation records extend to the 18th century. The England Wales Precipitation (EWP) series is a notable exception with continuous monthly records from 1766. EWP has found widespread use across diverse fields of research including trend detection, evaluation of climate model simulations, as a proxy for mid-latitude atmospheric circulation, a predictor in long-term European gridded precipitation data sets, the assessment of drought and extremes, tree-ring reconstructions and as a benchmark for other regional series. A key finding from EWP has been the multi-centennial trends towards wetter winters and drier summers. We statistically reconstruct seasonal EWP using independent, quality-assured temperature, pressure and circulation indices. Using a sleet and snow series for the UK derived by Profs. Gordon Manley and Elizabeth Shaw to examine winter reconstructions, we show that precipitation totals for pre-1870 winters are likely biased low due to gauge under-catch of snowfall and a higher incidence of snowfall during this period. When these factors are accounted for in our reconstructions, the observed trend to wetter winters in EWP is no longer evident. For summer, we find that pre-1820 precipitation totals are too high, likely due to decreasing network density and less certain data at key stations. A significant trend to drier summers is not robustly present in our reconstructions of the EWP series. While our findings are more certain for winter than summer, we highlight (a) that extreme caution should be exercised when using EWP to make inferences about multi-centennial trends, and; (b) that assessments of 18th and 19th Century winter precipitation should be aware of potential snow biases in early records. Our findings underline the importance of continual re-appraisal of established long-term climate data sets as new evidence becomes available. It is also likely that the identified biases in winter EWP have distorted many other long-term European precipitation series

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment

    No full text
    Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration). Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region
    corecore